{"title":"Harmonic analysis and filter design based on high power electromagnetic transmitter","authors":"Qingke Meng, Yiming Zhang, Xuhong Wang, Junxia Gao","doi":"10.1088/1742-6596/2636/1/012038","DOIUrl":"https://doi.org/10.1088/1742-6596/2636/1/012038","url":null,"abstract":"Abstract In order to effectively suppress the higher harmonics contained in the output voltage of high-power electromagnetic transmitter, the waveform expression of the output voltage of bipolar pulse width modulation (SPWM) circuit is derived, which can accurately obtain the fundamental wave and each harmonic content in the inverter bridge transmission voltage, and provide a theoretical basis for the design of output filter. At the same time, a design method of output LC filter based on high power electromagnetic transmitter is proposed based on MATLAB simulation calculation and considering the fundamental voltage drop, inductor current ripple and reactive power capacity on the filter inductor. Finally, the feasibility of this design method is verified by the field experiment of transmitter, and the output filtering effect is good.","PeriodicalId":44008,"journal":{"name":"Journal of Physics-Photonics","volume":"22 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135763529","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Results Comparison of Numerical and Analytical Methods for Electric Potential on Rectangular Pipes","authors":"Z S Maulana, M F R Rizaldi, M A Bustomi","doi":"10.1088/1742-6596/2623/1/012036","DOIUrl":"https://doi.org/10.1088/1742-6596/2623/1/012036","url":null,"abstract":"Abstract Two methods can be used to solve the problem of electric potential distribution in a rectangular pipe: numerical and analytical. The analytical solution is obtained using the Laplace equation and the given boundary conditions to complete the solution in the form of a linear combination of sinusoidal and hyperbolic functions. While the numerical solution is obtained using the finite difference method in the Python programming language. The comparison between the analytical and numerical solutions shows that the two have a good fit. This can be seen from the graph of the electric potential distribution in the rectangular pipe produced by the two methods. Numerical solutions obtained using the finite difference method in the Python programming language provide accurate and efficient results in solving the problem of the electric potential distribution in rectangular pipes. The use of the first four terms in the analytical method and the selection of 4 observation points on the pipe, namely points A (3.33, 1.67), B (3.33, 3.34), C (6.67, 1.67), and D (6.67, 3.34) produces a difference in the electric potential value between analytical and numerical methods each point is 35.91%, 51.96%, 51.96%, and 35.91%. The value difference between analytical and numerical methods will be smaller if more terms are taken in the analytical calculation, and more observation points are considered on the pipe.","PeriodicalId":44008,"journal":{"name":"Journal of Physics-Photonics","volume":"28 11","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135763765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Design of Multi-band Microstrip Antenna with Rectangular Patch for 2.3 GHz, 2.4 GHz, and 3.5 GHz Frequencies","authors":"None Katsirotin, V Rahayu","doi":"10.1088/1742-6596/2623/1/012018","DOIUrl":"https://doi.org/10.1088/1742-6596/2623/1/012018","url":null,"abstract":"Abstract Cellular developments encourage the integration of both 4G, Wi-Fi, and 5G network technologies into one device; an antenna is a tool that can be used to support the integration of these networks. A microstrip antenna is an antenna that is small, light, thin, easy to fabricate, and can be used in long ranges. In this paper, a microstrip antenna is designed on a printed circuit board (PCB) with a permittivity of 4.3 and a thickness of 1.6 mm. This research aims to design a microstrip antenna that is capable of working on 4G (2.3 GHz), Wi-Fi (2.4 GHz), and 5G 3.5 GHZ) frequencies in one antenna. The microstrip antenna is designed on a Printed Circuit Board (PCB) with a permittivity of 4.3 and a thickness of 1.6 mm, rectangular shaped patches, and each patch is connected using a bridging method. Next, the antenna is simulated using CST Suite 2021 software. Simulation results at frequencies of 2.3 GHz, 2.4 GHz, and 3.5 GHz produce return losses of -23.70, -22.87, and -20.60, VSWR values of 1, respectively. .13, 1.15, and 1.20, the bandwidth values are 6.27%, 3.84%, and 5.84%, respectively, and the gain values are 4.69 dBi, 8.53 dBi, and 3.49 dBi.","PeriodicalId":44008,"journal":{"name":"Journal of Physics-Photonics","volume":"29 7","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135763918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Continual Advance in Earth Physics Research Group at Physics Study Program, Unesa: What’s new and the next step","authors":"T Prastowo, None Madlazim, A Realita, M N Fahmi","doi":"10.1088/1742-6596/2623/1/012024","DOIUrl":"https://doi.org/10.1088/1742-6596/2623/1/012024","url":null,"abstract":"Abstract Earth Physics Research Group (EPRG) is one of three groups of research running at Physics Study Program, the State University of Surabaya, Indonesia, where a number of research projects with corresponding topics have been conducted (and some are in progress) by the group members and associated students having final projects in the field of earth physics since 2018. Whereas the research roadmap of the group has been presented in association with definitive research projects for 25 years long starting from 2011, the specific goal of this paper is to shortly summarise all academic achievement in terms of research performance made by the group members during the last five years. The majority of the recent works was mainly based on computational work, where some were completed in collaboration with researchers from other universities and a national agency and others were performed by the group members and selected students. The topics were spread across disciplines in earth physics that included tectonic earthquakes, tsunami generation and propagation of seismic and non-seismic origin, volcanic eruptions and an integrated disaster mitigation study. A small portion of the projects were performed using a chosen method of applied geophysics. These studies have ended up with publications in recent years, where the saline points of the key findings are here presented. Future studies focusing on vulnerability to earthquake hazards in the northern areas of Java and on volcanic and meteo-tsunamis are also discussed in the context of possible tsunamis induced by seismic sources or volcanic processes.","PeriodicalId":44008,"journal":{"name":"Journal of Physics-Photonics","volume":"30 6","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135764059","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Marangoni convection in a C-shape enclosure with partially heated walls","authors":"Zailan Siri, Sharifah Nuriza S M N Al ‘Idrus","doi":"10.1088/1742-6596/2633/1/012016","DOIUrl":"https://doi.org/10.1088/1742-6596/2633/1/012016","url":null,"abstract":"Abstract A numerical study was carried out to investigate Marangoni convection of nanofluid in a C-shape cavity with partially heated walls. The opposite sides of the walls are cooled at constant temperature while the rest of the partitions are kept adiabatic. The governing equations and boundary conditions are then introduced to describe the fluid flow and temperature distribution within the enclosure before the equations are non-dimensionalised and solved using the finite element method. The solutions, presented as streamlines, isotherms, local Nusselt and average Nusselt for varying Marangoni number, Rayleigh number, and depth, are then discussed.","PeriodicalId":44008,"journal":{"name":"Journal of Physics-Photonics","volume":"14 4","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135764407","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Assessing the potential of CO<sub>2</sub> huff ‘n’ puff technology for enhanced oil recovery and CO<sub>2</sub> sequestration in tight oil reservoirs","authors":"Longhui Yu, Hangyu Li, Junrong Liu, Shuyang Liu, Zhiqiang Wang, Qizhi Tan","doi":"10.1088/1742-6596/2636/1/012001","DOIUrl":"https://doi.org/10.1088/1742-6596/2636/1/012001","url":null,"abstract":"Abstract Fossil fuels utilization will produce a large amount of CO 2 , which causes a series of environmental problems. However, the exhaust CO 2 can be used to achieve oil recovery improvement (CO 2 EOR), while simultaneously allowing for the geological storage of CO 2 . For the unconventional reservoir, CO 2 huff ‘n’ puff (HNP) is a potential technology showing promising results in laboratory experiments, while its effectiveness in enhancing oil recovery and CO 2 sequestration at the reservoir scale remains uncertain. Thus, further research is needed to evaluate the CO 2 HNP performance for its implementation. In this paper, we conducted a numerical simulation of the CO 2 HNP process in a real tight oil reservoir (1800 m × 350 m × 10m in size) to assess its potential for improving oil recovery, CO 2 injectivity, and CO 2 sequestration. The results show that the accumulative oil production increased by more than 20% after the implementation of CO 2 HNP. Meanwhile, CO 2 HNP in tight oil reservoirs is proven capable to achieve CO 2 injectivities of more than 4×10 7 SCm 3 and CO 2 storages of more than 5×10 6 SCm 3 . We designed 3 CO 2 HNP schemes and found that the largest CO 2 storage does not occur in the optimal scenario for oil production. A new type of CO 2 HNP evaluation system considering oil production and storage capacity needs to be established. The results of the article suggest that CO 2 HNP can achieve an oil production increase and CO 2 storage in tight reservoirs, which has a positive significance for the sustainable development of environmental protection.","PeriodicalId":44008,"journal":{"name":"Journal of Physics-Photonics","volume":"13 2","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135764998","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Prior Knowledge-guided Hierarchical Action Quality Assessment with 3D Convolution and Attention Mechanism","authors":"Haoyang Zhou, Teng Hou, Jitao Li","doi":"10.1088/1742-6596/2632/1/012027","DOIUrl":"https://doi.org/10.1088/1742-6596/2632/1/012027","url":null,"abstract":"Abstract Recently, there has been a growing interest in the field of computer vision and deep learning regarding a newly emerging problem known as action quality assessment (AQA). However, most researchers still rely on the traditional approach of using models from the video action recognition field. Unfortunately, this approach overlooks crucial features in AQA, such as movement fluency and degree of completion. Alternatively, some researchers have employed the transformer paradigm to capture action details and overall action integrity, but the high computational cost associated with transformers makes them impractical for real-time tasks. Due to the diversity of action types, it is challenging to rely solely on a shared model for quality assessment of various types of actions. To address these issues, we propose a novel network structure for AQA, which is the first to integrate multi-model capabilities through a classification model. Specifically, we utilize a pre-trained I3D model equipped with a self-attention block for classification. This allows us to evaluate various categories of actions using just one model. Furthermore, we introduce self-attention mechanisms and multi-head attention into the traditional convolutional neural network. By systematically replacing the last few layers of the conventional convolutional network, our model gains a greater ability to sense the global coordination of different actions. We have verified the effectiveness of our approach on the AQA-7 dataset. In comparison to other popular models, our model achieves satisfactory performance while maintaining a low computational cost.","PeriodicalId":44008,"journal":{"name":"Journal of Physics-Photonics","volume":"97 2","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135715700","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Optimization of an Air-cooling Thermal Management System for Lithium-ion Battery Packs via Particle Swarm Algorithm","authors":"Wenbo Wu","doi":"10.1088/1742-6596/2636/1/012006","DOIUrl":"https://doi.org/10.1088/1742-6596/2636/1/012006","url":null,"abstract":"Abstract Recently, lithium-ion batteries have attracted many researchers and their safety issues such as overheating, combustion and explosion continue to further limit battery application scenarios. These issues are mainly caused by unoptimized battery structure parameters or cooling methods. In this paper, an integrated approach has been proposed to design an efficient air-cooling system using the particle swarm algorithm to find an optimal relationship between air flow rate and battery temperature. Firstly, this method can adjust an optimized air flow rate to ensure that the battery temperature is minimized with the lowest energy consumption via the particle swarm algorithm. Additionally, an optimized air flow rate can still be obtained with the change of structure parameters such as the radius in a lithium-ion battery pack via this novel algorithm. Then, we demonstrate the feasibility of this integrated method in simulations. Compared with the previous work, this method can employ the continuous modulation of the particle swarm algorithm, realizing both the best cooling capacity of the battery cooling system and simultaneously the lowest energy consumption for cooling in cell heat regulation systems. Meanwhile, temperature variations of the entire cell pack are also shown in simulations. In contrast to previous approaches, this integrated method may provide more dynamic thermal management inspirations for designing novel battery thermal management systems.","PeriodicalId":44008,"journal":{"name":"Journal of Physics-Photonics","volume":"23 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135763523","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Research on safety issues and safety analysis of new energy aircraft","authors":"Tang Chu, Li Zhongyang, Wang Libo","doi":"10.1088/1742-6596/2633/1/012006","DOIUrl":"https://doi.org/10.1088/1742-6596/2633/1/012006","url":null,"abstract":"Abstract As the global aviation industry faces increasing pressure on the environment, the International Civil Aviation Organization (ICAO) has implemented increasingly strict requirements for aircraft carbon emissions. The adoption of innovative energy technologies, such as electric power, hydrogen fuel, and sustainable biofuels in the aviation sector, will enable us to achieve zero carbon emission targets and mitigate environmental pollution associated with air transportation. Drawing on statistical data of aviation accidents, this paper analyses the primary causes of flight mishaps and summarizes several safety issues faced by new energy aircraft. Based on these, the new energy aircraft is divided into several subsystems, including power system, energy system, flight control system and so on. Then, safety analysis tools and methods are then used to conduct an analysis of the aircraft’s safety, with the aim of improving overall safety.","PeriodicalId":44008,"journal":{"name":"Journal of Physics-Photonics","volume":"22 6","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135763524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Design of Automatic Insect Trap Hypothenemus hampei Ferr. based on Solar Cells as a Source of Stinging Energy","authors":"R E Rachmanita, S Anggraini, M I R Apriadana","doi":"10.1088/1742-6596/2623/1/012010","DOIUrl":"https://doi.org/10.1088/1742-6596/2623/1/012010","url":null,"abstract":"Abstract One of the plant-disturbing organisms that always harms coffee plants is the insect Hypothenemus hampei Ferr. which causes fruit borer attacks. This study aims to design a solar panel-based H. hampei trapper. This tool is designed to work automatically according to the settings on the solar charge controller; it can catch H. hampei effectively; this tool has a low current (DC) that is safe for farmers; this tool can be used in plantation areas far from PLN because the source of electrical energy comes from solar cells; maintenance costs are relatively cheap, but the tool is designed to operate in the long term. The H. hampei trap uses solar panels as an energy source and is equipped with a stinger that works automatically by utilizing the solar charge controller feature. The functional test results show that the tool that has been designed can work well according to the plan made. The average consumption of stingers is 23.70 Wh. The average panel energy yield is 26.85 Wh. The panels’ energy output has exceeded the amount of energy the stingers need. The tool is designed to trap H. hampei well.","PeriodicalId":44008,"journal":{"name":"Journal of Physics-Photonics","volume":"22 2","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135763528","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}