Bahareh Mastiani, Daniël W S Cox and Ivo M Vellekoop
{"title":"Practical considerations for high-fidelity wavefront shaping experiments","authors":"Bahareh Mastiani, Daniël W S Cox and Ivo M Vellekoop","doi":"10.1088/2515-7647/ad5775","DOIUrl":"https://doi.org/10.1088/2515-7647/ad5775","url":null,"abstract":"Wavefront shaping (WFS) is a technique for directing light through turbid media. The theoretical aspects of WFS are well understood, and under near-ideal experimental conditions, accurate predictions for the expected signal enhancement can be given. In practice, however, there are many experimental factors that negatively affect the outcome of the experiment. Here, we present a comprehensive overview of these experimental factors, including the effect of sample scattering properties, noise, and response of the spatial light modulator. We present simple means to identify experimental imperfections and to minimize their negative effect on the outcome of the experiment. This paper is accompanied by Python code for automatically quantifying experimental problems using the OpenWFS framework for running and simulating WFS experiments.","PeriodicalId":44008,"journal":{"name":"Journal of Physics-Photonics","volume":"128 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141516850","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Diego Quintero Balbas, Laura Maestro-Guijarro, Paula María Carmona-Quiroga, Mohamed Oujja, Marta Castillejo, Francesca Bettini, Simone Porcinai and Jana Striova
{"title":"Non-invasive stratigraphic analyzes of gelatine-based modern painting materials with linear and nonlinear optical methods","authors":"Diego Quintero Balbas, Laura Maestro-Guijarro, Paula María Carmona-Quiroga, Mohamed Oujja, Marta Castillejo, Francesca Bettini, Simone Porcinai and Jana Striova","doi":"10.1088/2515-7647/ad5772","DOIUrl":"https://doi.org/10.1088/2515-7647/ad5772","url":null,"abstract":"Stratigraphic analyzes of polychrome surfaces, such as paintings, often need samples to offer consistent results regarding the sequence and composition of the layers. Non-invasive methodologies based on linear and nonlinear optical techniques limit material removal from the objects. Recently, optical coherence tomography (OCT) has become the preferred choice of heritage scientists because it is a safe and fast alternative for studying transparent or semi-transparent layers. Yet, nonlinear optical microscopy (NLOM)) technique in its modality of multiphoton excitation fluorescence (MPEF) has emerged as a promising tool for the same purpose. Here, we explored linear (OCT and confocal Raman microspectroscopy (CRM)) and nonlinear (NLOM-MPEF) optical methods’ capability to investigate gelatine-based layers in mock-up samples and a painting dated 1939 by an artist from the Surrealistic entourage. The optical behavior of mock-up samples that imitate the painting stratigraphy and of six painting fragments detached from the support was also investigated with fiber optics reflectance spectroscopy and laser induced fluorescence (LIF). Thickness values from the mock-ups obtained with OCT, CRM, and MPEF have provided evidence of the complementarity, from a millimetric to a micrometric scale, and the limitations (e.g. strong fluorescence emission in CRM) of the methods. Moreover, the presence of gelatine was ascertained by LIF spectroscopy applied to the painting fragments and NLOM-MPEF confirmed its suitability as a non-invasive technique for investigating gelatine-based stratigraphic systems.","PeriodicalId":44008,"journal":{"name":"Journal of Physics-Photonics","volume":"24 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141516851","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ronen Shekel, Kfir Sulimany, Shachar Resisi, Zohar Finkelstein, Ohad Lib, Sébastien M Popoff and Yaron Bromberg
{"title":"Tutorial: How to build and control an all-fiber wavefront modulator using mechanical perturbations","authors":"Ronen Shekel, Kfir Sulimany, Shachar Resisi, Zohar Finkelstein, Ohad Lib, Sébastien M Popoff and Yaron Bromberg","doi":"10.1088/2515-7647/ad5774","DOIUrl":"https://doi.org/10.1088/2515-7647/ad5774","url":null,"abstract":"Multimode optical fibers support the dense, low-loss transmission of many spatial modes, making them attractive for technologies such as communications and imaging. However, information propagating through multimode fibers is scrambled, due to modal dispersion and mode mixing. This is usually rectified using wavefront shaping techniques with devices such as spatial light modulators. Recently, we demonstrated an all-fiber system for controlling light propagation inside multimode fibers using mechanical perturbations, called the fiber piano. In this tutorial we explain the design considerations and experimental methods needed to build a fiber piano, and review applications where fiber pianos have been used.","PeriodicalId":44008,"journal":{"name":"Journal of Physics-Photonics","volume":"59 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141507338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alessandra Anna Passeri, Chiara Argentati, Francesco Morena, Francesco Bonacci, Igor Neri, Daniele Fioretto, Massimo Vassalli, Sabata Martino, Maurizio Mattarelli, Silvia Caponi
{"title":"Brillouin spectroscopy for accurate assessment of morphological and mechanical characteristics in micro-structured samples","authors":"Alessandra Anna Passeri, Chiara Argentati, Francesco Morena, Francesco Bonacci, Igor Neri, Daniele Fioretto, Massimo Vassalli, Sabata Martino, Maurizio Mattarelli, Silvia Caponi","doi":"10.1088/2515-7647/ad50b2","DOIUrl":"https://doi.org/10.1088/2515-7647/ad50b2","url":null,"abstract":"Brillouin spectroscopy has recently attracted attention as a powerful tool for the characterization of the mechanical properties of heterogeneous materials, particularly in the biological and biomedical domains. This study investigates the procedure to use Brillouin data to provide relevant morphological parameters of micro-structured samples. When acquiring Brillouin spectra at the interface between two regions of the sample, the spectrum shows signatures of both regions. This feature can be used to precisely identify the position of the interfaces by analyzing the evolution of the fitting parameters of the Brillouin spectra acquired by performing a linear scan across the interface. This concept has been demonstrated by measuring the thickness of adherent HEK293T cells. The results are validated using fluorescence microscopy, showing an excellent agreement. The present analysis showcases the wealth of information present in the Brillouin spectrum and the potentiality of Brillouin spectroscopy not only for mechanical characterization but also for label-free, high-resolution imaging of sample morphology. The study introduces the possibility of correlating mechanical properties and shape of biological samples using a single technique.","PeriodicalId":44008,"journal":{"name":"Journal of Physics-Photonics","volume":"12 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141546792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Patrick Cameron, Baptiste Courme, Daniele Faccio, Hugo Defienne
{"title":"Shaping the spatial correlations of entangled photon pairs","authors":"Patrick Cameron, Baptiste Courme, Daniele Faccio, Hugo Defienne","doi":"10.1088/2515-7647/ad50b1","DOIUrl":"https://doi.org/10.1088/2515-7647/ad50b1","url":null,"abstract":"Quantum imaging enhances imaging systems performance, potentially surpassing fundamental limits such as noise and resolution. However, these schemes have limitations and are still a long way from replacing classical techniques. Therefore, there is a strong focus on improving the practicality of quantum imaging methods, with the goal of finding real-world applications. With this in mind, in this tutorial we describe how the concepts of classical light shaping can be applied to imaging schemes based on entangled photon pairs. We detail two basic experimental configurations in which a spatial light modulator is used to shape the spatial correlations of a photon pair state and highlight the key differences between this and classical shaping. We then showcase two recent examples that expand on these concepts to perform aberration and scattering correction with photon pairs. We include specific details on the key steps of these experiments, with the goal that this can be used as a guide for building photon-pair-based imaging and shaping experiments.","PeriodicalId":44008,"journal":{"name":"Journal of Physics-Photonics","volume":"15 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141546793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Caterina Czibula, Manfred H Ulz, Alexander Wagner, Kareem Elsayad, Ulrich Hirn and Kristie J Koski
{"title":"The elastic stiffness tensor of cellulosic viscose fibers measured with Brillouin spectroscopy","authors":"Caterina Czibula, Manfred H Ulz, Alexander Wagner, Kareem Elsayad, Ulrich Hirn and Kristie J Koski","doi":"10.1088/2515-7647/ad4cc6","DOIUrl":"https://doi.org/10.1088/2515-7647/ad4cc6","url":null,"abstract":"Brillouin light scattering spectroscopy is applied to study the micromechanics of cellulosic viscose fibers, one of the commercially most important, man-made biobased fibers. Using an equal angle scattering geometry, we provide a thorough description of the procedure to determine the complete transversely isotropic elastic stiffness tensor. From the stiffness tensor the engineering-relevant material parameters such as Young’s moduli, shear moduli, and Poisson’s ratios in radial and axial fiber direction are evaluated. The investigated fiber type shows that, at ideal conditions, the material exhibits optical waveguide properties resulting in spontaneous Brillouin backscattering which can be used to obtain additional information from the Brillouin spectra, enabling the measurement of two different scattering processes and directions with only one scattering geometry.","PeriodicalId":44008,"journal":{"name":"Journal of Physics-Photonics","volume":"63 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141252856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sara Mattiello, Olga De Pascale, Vincenzo Palleschi, Girolamo Fiorentino and Giorgio S Senesi
{"title":"Application of handheld/portable spectroscopic tools to the identification, inner stratigraphy and mapping of archaeological metal artefacts","authors":"Sara Mattiello, Olga De Pascale, Vincenzo Palleschi, Girolamo Fiorentino and Giorgio S Senesi","doi":"10.1088/2515-7647/ad46a7","DOIUrl":"https://doi.org/10.1088/2515-7647/ad46a7","url":null,"abstract":"Field handheld/portable instrumentations, such as in-situ geochemical analyzers, have the potential to assist efficiently targeted geochemical archaeometry campaigns in detecting and quantifying specific elements. Non-destructive portable energy dispersive x-ray fluorescence and micro-destructive handheld laser-induced breakdown spectroscopy (LIBS) instrumentation were utilized to investigate the elemental composition, internal stratigraphy by depth profiling and microscale compositional mapping of five copper and two iron alloy artefacts collected from various ancient graves in the Minervino Murge area, Apulia, Italy. The primary elements identified by both techniques included Cu, Sn and Pb in copper alloys, and Fe with minor amounts of Cu and Pb in iron alloys. Furthermore, the elements Al, Ca, Si, Mg, Na and K, mostly originated from soil contamination, and the trace elements Sb, Ni and Zn were detected. The satisfactory performance of both techniques was assessed by their capacity to provide reproducible elemental composition data. Finally, the depth profile and mapping achieved by LIBS contributed to understanding the metal processing and history of the objects studied, so confirming both techniques to be robust analytical tools in outdoor archaeology and archaeometry campaigns.","PeriodicalId":44008,"journal":{"name":"Journal of Physics-Photonics","volume":"157 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140933515","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Beam shaping in light-sheet microscopy: an experimental analysis","authors":"Manuel Hüpfel and Gerd Ulrich Nienhaus","doi":"10.1088/2515-7647/ad46a9","DOIUrl":"https://doi.org/10.1088/2515-7647/ad46a9","url":null,"abstract":"Thanks to its unique optical sectioning capability, light-sheet fluorescence microscopy has proven to be a powerful technique for volumetric imaging of entire model organisms with high spatial and temporal resolution. For light sheet generation with scanned laser beams, holographic beam shaping offers precise control over the optical fields exciting the fluorescence. Various illumination schemes have been proposed, aiming for best image quality with regard to axial resolution, optical sectioning, illumination homogeneity and photobleaching while at the same time retaining a large field of view. Here, we have engineered and characterized a variety of beams and analyzed their imaging performance by using phantom samples and zebrafish embryos. These data may assist researchers to select the light sheet best suited to the imaging application at hand.","PeriodicalId":44008,"journal":{"name":"Journal of Physics-Photonics","volume":"41 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140933859","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Topological photonic encoder based on the disclination states","authors":"Guoxiang Si, Wen Zhao, Hongyu Zhang and Cuicui Lu","doi":"10.1088/2515-7647/ad46aa","DOIUrl":"https://doi.org/10.1088/2515-7647/ad46aa","url":null,"abstract":"Topological disclination states are highly localized and stable by means of introducing disclination, which provide a robust platform for realizing optical information transition. A photonic encoder, as a kind of optical information transition element, can record, transmit, and protect optical information. However, there is no effective methods to realize topological photonic encoders. In this work, we propose a method to realize topological photonic encoder through topological disclination states. After the introduction of a disclination in the honeycomb structure, four types of disclination states can be generated. To demonstrate the device to carry more information, nine disclination structures with different cylindrical radii are combined, and the disclination states can be denoted by digital signals 1–4 to prepare a topological photonic encoder. In addition, to improve the security of information transition, we build an encryption algorithm based on Morse code. This work provides a new idea for the construction of encoding devices and promotes the practical application of the topological disclination states.","PeriodicalId":44008,"journal":{"name":"Journal of Physics-Photonics","volume":"206 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140933607","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Speed of sound measurement and mapping in transparent materials by impulsive stimulated Brillouin microscopy","authors":"Taoran Le, Jiarui Li, Haoyun Wei and Yan Li","doi":"10.1088/2515-7647/ad46a8","DOIUrl":"https://doi.org/10.1088/2515-7647/ad46a8","url":null,"abstract":"Impulsive stimulated Brillouin scattering (ISBS) is a variant of stimulated Brillouin scattering, which can overcome the shortcomings of the long acquisition time of traditional Brillouin microscopy. We introduce the difference between ISBS and other Brillouin microscopies in calculating longitudinal modulus. The Brillouin frequency shift obtained by ISBS is only related to the system parameters and the speed of sound (SOS) in the sample, not to the refractive index. Non-contact SOS measurement of homogeneous samples is an important application of Brillouin scattering, used in the early study of Brillouin spectroscopy and the mechanical properties of liquids. However, the measurement requires prior knowledge of the sample refractive index, which limits the measurement of the unknown refractive index sample. Here, we propose a method to measure the SOS based on ISBS, which in principle avoids the need for refractive index parameters. The SOS of several liquids are measured and compared with the standard values. The mean relative standard deviation is 1.13%. Moreover, we measure the SOS of a mixture of ethanol and water to demonstrate an application of measuring SOS without refractive index information. We also demonstrate the high spatial resolution of ISBS with a methanol-filled PDMS sample.","PeriodicalId":44008,"journal":{"name":"Journal of Physics-Photonics","volume":"123 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140933463","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}