Soils and RocksPub Date : 2023-02-26DOI: 10.28927/sr.2023.005222
B. Rocha, Bruno Silva, H. Giacheti
{"title":"Maximum shear modulus estimative from SPT for some Brazilian tropical soils","authors":"B. Rocha, Bruno Silva, H. Giacheti","doi":"10.28927/sr.2023.005222","DOIUrl":"https://doi.org/10.28927/sr.2023.005222","url":null,"abstract":"Maximum shear modulus (G0) has been used in various geotechnical jobs (e.g., seismic site assessment, machine vibration and pile driven). Laboratory and in situ determination of G0 is not a current practice in Brazil. G0 can be estimated from empirical correlations based on in situ tests like Standard Penetration Test (SPT) and Cone Penetration Test (CPT) in the preliminary design phase. Several empirical correlations to estimate G0 from SPT N value have been developed and are available in the literature. However, most of these correlations were established based on experience with well-behaved soils formed in temperate and glacial zones, which may not always be used for tropical soils. This paper assessed and discussed the applicability of some correlations for G0 estimative from SPT data in lateritic and saprolitic soils. The classical correlations for sedimentary soils underestimated G0 of tropical soils. After updating the database, the tropical soils correlations reasonably estimated G0 for the lateritic ones, which was not the case for the saprolitic soils. It was observed that differentiating the soils only as lateritic or saprolitic was not adequate for a good G0 estimate for the saprolitic sandy soils. It was found that only the lateritic soils correlation can be used with caution as a preliminary attempt to estimate G0 from SPT N value in soils with similar characteristics to the ones presented in this paper.","PeriodicalId":43687,"journal":{"name":"Soils and Rocks","volume":" ","pages":""},"PeriodicalIF":0.5,"publicationDate":"2023-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47409135","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Soils and RocksPub Date : 2023-02-09DOI: 10.28927/sr.2023.002822
Leila Carvalho, F. Monteiro, M. Casagrande
{"title":"Large-scale direct shear testing in coir fibers reinforced sand","authors":"Leila Carvalho, F. Monteiro, M. Casagrande","doi":"10.28927/sr.2023.002822","DOIUrl":"https://doi.org/10.28927/sr.2023.002822","url":null,"abstract":"The need to develop and commercialize materials incorporating vegetable fibers has risen over the last 20 years to decrease environmental impact and achieve sustainability. In geotechnical engineering, soil reinforcement with plant-based fibers has gained a lot of interest, especially in temporary earthworks. Soil reinforcement with plant-based fibers is a low-cost, environmentally friendly method with excellent reproducibility and accessibility. In this context, growing appeals for using plant-based fibers such as sisal, coir, curauá, and kenaf for manufacturing new geomaterials have been verified. This paper aims to evaluate the mechanical behavior of soil-fiber composites by insertion of natural coir fibers into a sandy soil matrix with different fiber lengths and contents, where the fibers were randomly distributed in the soil mass. Large-scale direct shear test evaluated the strength-displacement behavior in samples with dimensions of 300 x 300 mm and 200 mm in height. The tests were carried out using fibers with 25 and 50 mm lengths, in 0.50 and 0.75% of fiber contents (in relation to the dry weight of the soil), in a relative density of 50% and 10% moisture content. The overall analysis of the results showed that the coir fibers addition in the well-graded sand increased the shear strength parameters and the ductility, compared with the unreinforced sand.","PeriodicalId":43687,"journal":{"name":"Soils and Rocks","volume":" ","pages":""},"PeriodicalIF":0.5,"publicationDate":"2023-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47367056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Soils and RocksPub Date : 2023-02-09DOI: 10.28927/sr.2023.002122
Djamila Behloul, S. Rafa, B. Moussai
{"title":"Numerical analysis of laterally loaded barrette foundation","authors":"Djamila Behloul, S. Rafa, B. Moussai","doi":"10.28927/sr.2023.002122","DOIUrl":"https://doi.org/10.28927/sr.2023.002122","url":null,"abstract":"The effect of soil constitutive models, nonlinearity of the barrette material, loading direction as well as the cross-sectional shape and second moment of inertia on the response the barrette foundation under lateral loading is investigated in this research. The numerical analyses were conducted on a well-documented barrette load test using Plaxis 3D. The investigation results revealed that the response of the barrette is significantly affected by the direction of the applied load and nonlinear behavior of the soil and barrette materials. For rectangular, square, and circular piles with different cross-section areas and same second moment of inertia, the square and circular piles exhibit similar behavior but different from that of the rectangular pile. However, when these piles have the same cross-section area and different second moments of inertia, the behavior of rectangular pile is close to that of square pile when the load is applied along the x direction and is close to that of circular pile shape when the load is applied along the y direction.","PeriodicalId":43687,"journal":{"name":"Soils and Rocks","volume":" ","pages":""},"PeriodicalIF":0.5,"publicationDate":"2023-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47887725","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Soils and RocksPub Date : 2023-02-09DOI: 10.28927/sr.2023.002222
Francisco Manzano, F. Lamas, J. Azañón
{"title":"Overconsolidated flysch-type clays. Engineering considerations for the Strait of Gibraltar tunnel project","authors":"Francisco Manzano, F. Lamas, J. Azañón","doi":"10.28927/sr.2023.002222","DOIUrl":"https://doi.org/10.28927/sr.2023.002222","url":null,"abstract":"The stress-strain behaviour of 85 overconsolidated clay samples from Campo de Gibraltar Flysch Through Domain (Algeciras Unit, South Spain) is presented and discussed. The samples were identified and classified following ASTM standards while their chemical and mineralogical composition were determined by chemical and X-ray techniques. Several samples were tested under triaxial as well as oedometric conditions. Given the results, a detailed comparison was made between different theoretical constitutive models and real testing data, using the finite-elements method. The comparison indicated a good fit between experimental data and those found with finite-elements modelling when the Hardening Soil constitutive model was used. This model showed a better fit than did the Modified Cam- Clay model (historically used for modelling clayey soils), although the latter fit proved better for lower strain values (<5%) than higher ones. These results clarify this intermediate material (hard soils – weak rocks) behaviour and will help in Strait of Gibraltar tunnel project design, as these materials are widely involved in this tunnel design.","PeriodicalId":43687,"journal":{"name":"Soils and Rocks","volume":"1 1","pages":""},"PeriodicalIF":0.5,"publicationDate":"2023-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69268578","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Soils and RocksPub Date : 2023-01-29DOI: 10.28927/sr.2023.001422
Felipe Barroso, A. Moura
{"title":"Proposition of correlations for the dynamic parameters of carbonate sands","authors":"Felipe Barroso, A. Moura","doi":"10.28927/sr.2023.001422","DOIUrl":"https://doi.org/10.28927/sr.2023.001422","url":null,"abstract":"The offshore industry has been challenged with the necessity to build structures with foundations on carbonate soils, found in extensive areas of the tropical and intertropical zones of the planet. As a better understanding of the behavior of these soils becomes more and more indispensable, this paper presents equations to predict the dynamic behavior of carbonate sands, in which two expressions (G/Gmax versus g and D versus g) were obtained via multiple linear regression using data from resonant column tests carried out on carbonate sands from Cabo Rojo, Puerto Rico (Cataño & Pando, 2010). The proposed equations agreed well with experimental data. The error for the expressions G/Gmax versus g was less than 10%, while the expressions D versus γ trended to underestimate the values for the loose condition (Dr = 24%), presenting an effective confining stress of 50kPa. Furthermore, the proposed equations were compared with predictions exhibited by Javdanian & Jafarian (2018) of G/Gmax versus g and D versus g for carbonate sands, also yielding fairly concordant results.","PeriodicalId":43687,"journal":{"name":"Soils and Rocks","volume":" ","pages":""},"PeriodicalIF":0.5,"publicationDate":"2023-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48595014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Soils and RocksPub Date : 2023-01-11DOI: 10.28927/sr.2023.003622
Bendaas Azeddine, Merdas Abdelghani
{"title":"The cavity’s effect on the bearing capacity of a shallow footing in reinforced slope sand","authors":"Bendaas Azeddine, Merdas Abdelghani","doi":"10.28927/sr.2023.003622","DOIUrl":"https://doi.org/10.28927/sr.2023.003622","url":null,"abstract":"This paper presents an experimental and numerical study for the effect of the cavity on the behaviour of a strip footing positioned on a reinforced sand slope. This study used a new type of geosynthetics called fiber carbon and fiber glass. These components have the potential to isolate the soil inside the geosynthetic and prevent shears stress mobilization. The investigation aimed to determine the effect of cavity depth (h) and the number of reinforcing layers (N) on the bearing capacity and settlement characteristics of footing, empirically for investigating the effect of cavity on the bearing capacity, some parameters were assumed constant in all tests, for example, relative density, a distance of the footing from the slope edge, and length between layers of reinforcement. The variable parameters are the distance between footings and centre of cavity and the number of reinforcing layers. The results show that the settlement behaviour of footing adjacent to a soil slope is significantly affected by h and N. It is observed that qu, which represents the ultimate bearing capacity, improves with an increase in N. The influence of the cavity appeared insignificant when it was positioned at a depth equal to twice the width of footing.","PeriodicalId":43687,"journal":{"name":"Soils and Rocks","volume":" ","pages":""},"PeriodicalIF":0.5,"publicationDate":"2023-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48334502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Soils and RocksPub Date : 2023-01-11DOI: 10.28927/sr.2023.004022
A. Meier, V. Faro, E. Odebrecht
{"title":"Shear strength analysis of interfaces between granular soils and concrete cured under stress","authors":"A. Meier, V. Faro, E. Odebrecht","doi":"10.28927/sr.2023.004022","DOIUrl":"https://doi.org/10.28927/sr.2023.004022","url":null,"abstract":"The goal of this study was to improve the understanding of the soil-structure interaction mechanisms at the interface of bored concrete piles cast in sandy soils. In addition, this study aimed to quantify the interface shear strength and identify the factors that influence the response. Roughness measurements and direct shear tests were performed at the interface between two samples of sand (medium and coarse) and concrete cured under stress. The influence of the mean grain diameter, relative density, water content, concrete curing time and normal stress on the interface shear strength were statistically analyzed. The results showed a consistent behavior with the technical literature, but with higher values, which can be attributed to the concrete curing time, a factor not studied by other authors.","PeriodicalId":43687,"journal":{"name":"Soils and Rocks","volume":" ","pages":""},"PeriodicalIF":0.5,"publicationDate":"2023-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48389115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Soils and RocksPub Date : 2023-01-11DOI: 10.28927/sr.2023.011222
Elisangela Mazzutti, R. Klamt, V. Faro
{"title":"Study of the hydro-mechanical behavior of a stabilized soil with water treatment plant sludge for application in sanitary landfills","authors":"Elisangela Mazzutti, R. Klamt, V. Faro","doi":"10.28927/sr.2023.011222","DOIUrl":"https://doi.org/10.28927/sr.2023.011222","url":null,"abstract":"The improper disposal of water treatment plant sludge (WTPS) into the environment can cause irreparable damage. One way to minimize this negative impact is to mix the sludge with the soil, applying the materials in engineering works. In this research, the objective was the use of WTPS for soil stabilization purposes, verifying the improvement of the characteristics and properties of a stabilized clay soil with different sludge percentages for application in waterproofing layers of bottom and final coverage of landfills. Formulations were prepared with additions of 0, 15, 30 and 50% of WTPS. Characterization, compaction, permeability and simple compression resistance tests were carried out. All mixtures met the Brazilian requirements for use in landfill layers, but the mixture composed of 70% soil + 30% WTPS was defined as the best for application in bottom layers and final coverage for the following reasons: it meets the coefficient of permeability and has the highest simple compression resistance of all blends. Furthermore, it is noteworthy that the use of the mixtures, especially 50% soil + 50% WTPS, in daily (intermediate) layers would be an environmentally beneficial alternative that would contribute to the circular economy and to achieving sustainable development goals 11, 12 and 15 by 2030. These applications would bring advantages in the destination of WTPS and reduced consumption of natural resources (soil).","PeriodicalId":43687,"journal":{"name":"Soils and Rocks","volume":" ","pages":""},"PeriodicalIF":0.5,"publicationDate":"2023-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47112166","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Soils and RocksPub Date : 2022-12-18DOI: 10.28927/sr.2023.007422
Alessandro Goldoni, Deise Pelissaro, Eriky Silveira, P. Prietto, Francisco Rosa
{"title":"Durability and mechanical long-term performance of reclaimed asphalt pavement stabilized by alkali-activation","authors":"Alessandro Goldoni, Deise Pelissaro, Eriky Silveira, P. Prietto, Francisco Rosa","doi":"10.28927/sr.2023.007422","DOIUrl":"https://doi.org/10.28927/sr.2023.007422","url":null,"abstract":"The application of alkali-activated industrial by-products for the stabilization of reclaimed asphalt pavement (RAP), can become a sustainable solution to reduce the carbon footprint of road construction and maintenance activities. Furthermore, this approach can also reduce the increasing depletion of natural resources. Thus, the durability and long-term mechanical performance of RAP stabilized with alkali-activated fly ash were assessed in this study. The alkaline activator was a solution composed of sodium hydroxide and sodium silicate. To this extent, unconfined compressive strength (UCS) and durability tests were conducted in this research. The proposed alkali-activated binder significantly increased the UCS of RAP mixtures, with long-term (365 days) results reaching values up to 32 MPa; fulfilling the strength requirements for cement-stabilized soil mixtures and even stable inorganic binder materials for road base and sub-base layers of pavements. These results indicate that when stabilized with an alkali-activated fly ash binder, RAP presents several applications for road engineering; even when subjected to seasonal variations in humidity and temperature, as shown by the durability tests.","PeriodicalId":43687,"journal":{"name":"Soils and Rocks","volume":" ","pages":""},"PeriodicalIF":0.5,"publicationDate":"2022-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42652079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Soils and RocksPub Date : 2022-12-18DOI: 10.28927/sr.2023.004522
Bismarck Oliveira, M. Sales, R. Angelim, Luiz Galvani Junior
{"title":"Numerical simulations of displacement piles in a tropical soil","authors":"Bismarck Oliveira, M. Sales, R. Angelim, Luiz Galvani Junior","doi":"10.28927/sr.2023.004522","DOIUrl":"https://doi.org/10.28927/sr.2023.004522","url":null,"abstract":"The behavior of pile foundations under axial loading is directly influenced by the effects that its installation process induces in the surrounding soil. Consequently, the consideration of these effects is essential for the correct numerical modeling of these geotechnical structures. In the present study, numerical simulations of driven cast-in-situ piles under axial loading have been carried out using finite element analysis. Three 3.5 m long piles with diameters ranging from 114.3 to 219.1 mm were analyzed. The pile installation effects have been considered indirectly by employing two distinct approaches, both based on the concepts of cylindrical cavity expansion. The behavior of the tropical soil profile is described with the Hardening Soil constitutive model. The load-displacement response and load distribution along the pile obtained with the numerical simulations have been analyzed and compared with in-situ load tests results. In the failure conditions, both approaches accurately predicted the bearing capacity of the piles, with an average error of only 2% compared to the measured values. The results in terms of load distribution over depth were also satisfactory. The difference between measured and numerical ultimate base resistance values ranged from 0% to 30%. The good agreement between the numerical and experimental results indicates that the proposed numerical approaches have been effective in simulating the piles installation process and reinforces the importance of considering the installation effects in the numerical modeling of these geotechnical structures. Both approaches can also be used to predict the bearing capacity of displacement piles.","PeriodicalId":43687,"journal":{"name":"Soils and Rocks","volume":" ","pages":""},"PeriodicalIF":0.5,"publicationDate":"2022-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44961124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}