Alessandro Goldoni, Deise Pelissaro, Eriky Silveira, P. Prietto, Francisco Rosa
{"title":"碱活化稳定再生沥青路面的耐久性和力学长期性能","authors":"Alessandro Goldoni, Deise Pelissaro, Eriky Silveira, P. Prietto, Francisco Rosa","doi":"10.28927/sr.2023.007422","DOIUrl":null,"url":null,"abstract":"The application of alkali-activated industrial by-products for the stabilization of reclaimed asphalt pavement (RAP), can become a sustainable solution to reduce the carbon footprint of road construction and maintenance activities. Furthermore, this approach can also reduce the increasing depletion of natural resources. Thus, the durability and long-term mechanical performance of RAP stabilized with alkali-activated fly ash were assessed in this study. The alkaline activator was a solution composed of sodium hydroxide and sodium silicate. To this extent, unconfined compressive strength (UCS) and durability tests were conducted in this research. The proposed alkali-activated binder significantly increased the UCS of RAP mixtures, with long-term (365 days) results reaching values up to 32 MPa; fulfilling the strength requirements for cement-stabilized soil mixtures and even stable inorganic binder materials for road base and sub-base layers of pavements. These results indicate that when stabilized with an alkali-activated fly ash binder, RAP presents several applications for road engineering; even when subjected to seasonal variations in humidity and temperature, as shown by the durability tests.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Durability and mechanical long-term performance of reclaimed asphalt pavement stabilized by alkali-activation\",\"authors\":\"Alessandro Goldoni, Deise Pelissaro, Eriky Silveira, P. Prietto, Francisco Rosa\",\"doi\":\"10.28927/sr.2023.007422\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The application of alkali-activated industrial by-products for the stabilization of reclaimed asphalt pavement (RAP), can become a sustainable solution to reduce the carbon footprint of road construction and maintenance activities. Furthermore, this approach can also reduce the increasing depletion of natural resources. Thus, the durability and long-term mechanical performance of RAP stabilized with alkali-activated fly ash were assessed in this study. The alkaline activator was a solution composed of sodium hydroxide and sodium silicate. To this extent, unconfined compressive strength (UCS) and durability tests were conducted in this research. The proposed alkali-activated binder significantly increased the UCS of RAP mixtures, with long-term (365 days) results reaching values up to 32 MPa; fulfilling the strength requirements for cement-stabilized soil mixtures and even stable inorganic binder materials for road base and sub-base layers of pavements. These results indicate that when stabilized with an alkali-activated fly ash binder, RAP presents several applications for road engineering; even when subjected to seasonal variations in humidity and temperature, as shown by the durability tests.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.28927/sr.2023.007422\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28927/sr.2023.007422","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Durability and mechanical long-term performance of reclaimed asphalt pavement stabilized by alkali-activation
The application of alkali-activated industrial by-products for the stabilization of reclaimed asphalt pavement (RAP), can become a sustainable solution to reduce the carbon footprint of road construction and maintenance activities. Furthermore, this approach can also reduce the increasing depletion of natural resources. Thus, the durability and long-term mechanical performance of RAP stabilized with alkali-activated fly ash were assessed in this study. The alkaline activator was a solution composed of sodium hydroxide and sodium silicate. To this extent, unconfined compressive strength (UCS) and durability tests were conducted in this research. The proposed alkali-activated binder significantly increased the UCS of RAP mixtures, with long-term (365 days) results reaching values up to 32 MPa; fulfilling the strength requirements for cement-stabilized soil mixtures and even stable inorganic binder materials for road base and sub-base layers of pavements. These results indicate that when stabilized with an alkali-activated fly ash binder, RAP presents several applications for road engineering; even when subjected to seasonal variations in humidity and temperature, as shown by the durability tests.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.