{"title":"水处理厂污泥在卫生填埋场中应用的稳定土的水力力学行为研究","authors":"Elisangela Mazzutti, R. Klamt, V. Faro","doi":"10.28927/sr.2023.011222","DOIUrl":null,"url":null,"abstract":"The improper disposal of water treatment plant sludge (WTPS) into the environment can cause irreparable damage. One way to minimize this negative impact is to mix the sludge with the soil, applying the materials in engineering works. In this research, the objective was the use of WTPS for soil stabilization purposes, verifying the improvement of the characteristics and properties of a stabilized clay soil with different sludge percentages for application in waterproofing layers of bottom and final coverage of landfills. Formulations were prepared with additions of 0, 15, 30 and 50% of WTPS. Characterization, compaction, permeability and simple compression resistance tests were carried out. All mixtures met the Brazilian requirements for use in landfill layers, but the mixture composed of 70% soil + 30% WTPS was defined as the best for application in bottom layers and final coverage for the following reasons: it meets the coefficient of permeability and has the highest simple compression resistance of all blends. Furthermore, it is noteworthy that the use of the mixtures, especially 50% soil + 50% WTPS, in daily (intermediate) layers would be an environmentally beneficial alternative that would contribute to the circular economy and to achieving sustainable development goals 11, 12 and 15 by 2030. These applications would bring advantages in the destination of WTPS and reduced consumption of natural resources (soil).","PeriodicalId":43687,"journal":{"name":"Soils and Rocks","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study of the hydro-mechanical behavior of a stabilized soil with water treatment plant sludge for application in sanitary landfills\",\"authors\":\"Elisangela Mazzutti, R. Klamt, V. Faro\",\"doi\":\"10.28927/sr.2023.011222\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The improper disposal of water treatment plant sludge (WTPS) into the environment can cause irreparable damage. One way to minimize this negative impact is to mix the sludge with the soil, applying the materials in engineering works. In this research, the objective was the use of WTPS for soil stabilization purposes, verifying the improvement of the characteristics and properties of a stabilized clay soil with different sludge percentages for application in waterproofing layers of bottom and final coverage of landfills. Formulations were prepared with additions of 0, 15, 30 and 50% of WTPS. Characterization, compaction, permeability and simple compression resistance tests were carried out. All mixtures met the Brazilian requirements for use in landfill layers, but the mixture composed of 70% soil + 30% WTPS was defined as the best for application in bottom layers and final coverage for the following reasons: it meets the coefficient of permeability and has the highest simple compression resistance of all blends. Furthermore, it is noteworthy that the use of the mixtures, especially 50% soil + 50% WTPS, in daily (intermediate) layers would be an environmentally beneficial alternative that would contribute to the circular economy and to achieving sustainable development goals 11, 12 and 15 by 2030. These applications would bring advantages in the destination of WTPS and reduced consumption of natural resources (soil).\",\"PeriodicalId\":43687,\"journal\":{\"name\":\"Soils and Rocks\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soils and Rocks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.28927/sr.2023.011222\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soils and Rocks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28927/sr.2023.011222","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Study of the hydro-mechanical behavior of a stabilized soil with water treatment plant sludge for application in sanitary landfills
The improper disposal of water treatment plant sludge (WTPS) into the environment can cause irreparable damage. One way to minimize this negative impact is to mix the sludge with the soil, applying the materials in engineering works. In this research, the objective was the use of WTPS for soil stabilization purposes, verifying the improvement of the characteristics and properties of a stabilized clay soil with different sludge percentages for application in waterproofing layers of bottom and final coverage of landfills. Formulations were prepared with additions of 0, 15, 30 and 50% of WTPS. Characterization, compaction, permeability and simple compression resistance tests were carried out. All mixtures met the Brazilian requirements for use in landfill layers, but the mixture composed of 70% soil + 30% WTPS was defined as the best for application in bottom layers and final coverage for the following reasons: it meets the coefficient of permeability and has the highest simple compression resistance of all blends. Furthermore, it is noteworthy that the use of the mixtures, especially 50% soil + 50% WTPS, in daily (intermediate) layers would be an environmentally beneficial alternative that would contribute to the circular economy and to achieving sustainable development goals 11, 12 and 15 by 2030. These applications would bring advantages in the destination of WTPS and reduced consumption of natural resources (soil).
期刊介绍:
Soils and Rocks publishes papers in English in the broad fields of Geotechnical Engineering, Engineering Geology and Environmental Engineering. The Journal is published in April, August and December. The journal, with the name "Solos e Rochas", was first published in 1978 by the Graduate School of Engineering-Federal University of Rio de Janeiro (COPPE-UFRJ).