Solid State SciencesPub Date : 2024-09-24DOI: 10.1016/j.solidstatesciences.2024.107711
{"title":"Optical parameters and gamma shielding quality of sodium-borate glasses: The relative contribution of Bi2O3, SrO, and Li2O","authors":"","doi":"10.1016/j.solidstatesciences.2024.107711","DOIUrl":"10.1016/j.solidstatesciences.2024.107711","url":null,"abstract":"<div><div>The optical quality and compositional flexibility of borate glasses make them attractive materials for optical applications, nuclear waste containment, transparent radiation shields and many other applications in the nuclear and allied industries. This study presents the physical, optical, and gamma transmission data of the sodium borate glass structure: 75B<sub>2</sub>O<sub>3</sub> – 15Na<sub>2</sub>O – 9.5x – 0.5Nd<sub>2</sub>O<sub>3;</sub> for <em>x</em> = Bi<sub>2</sub>O<sub>3</sub> (BiNd), SrO (SrNd), and Li<sub>2</sub>O (LiNd). The glasses were prepared using the traditional melt-and-quench technique. The influence of Bi<sub>2</sub>O<sub>3</sub>, SrO, and Li<sub>2</sub>O on the physical attributes, optical constants, and gamma radiation interaction coefficients was probed using standard laboratory procedures and software. The density of BiNd, SrNd, and LiNd was 3.32, 2.43, and 2.24 g/cm<sup>3</sup>, respectively. The molar volume of the glasses followed the trend: BiNd > SrNd > LiNd. The optical constants of the glasses, such as refractive index, metallization criterion, molar refractivity, molar polarizability, reflectance loss, and optical transmission, showed a wide fluctuation with respect to glass composition. The values of the gamma mass attenuation coefficients for 15 keV–15 MeV photons were in the range 0.0316–45.0225 cm<sup>2</sup>/g for BiNd, 0.0206–5.4940 cm<sup>2</sup>/g for SrNd, and 0.0184–3.4603 cm<sup>2</sup>/g for LiNd. Generally, density has a positive correlation with the gamma absorption prowess of the investigated xNd glasses. A correlation between the optical and shielding parameters was highlighted in this study. The xNd glasses, especially SrNd and BiNd, are preferred as transparent radiation protection barriers, in contrast to some conventional Pb-based glasses, from environmental and public health perspectives. This glass composition is therefore unique and its properties are essentially useful in optical and radiation technologies.</div></div>","PeriodicalId":432,"journal":{"name":"Solid State Sciences","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142322359","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Solid State SciencesPub Date : 2024-09-21DOI: 10.1016/j.solidstatesciences.2024.107709
{"title":"What is the true ground state of intermetallic compound Fe3Al?","authors":"","doi":"10.1016/j.solidstatesciences.2024.107709","DOIUrl":"10.1016/j.solidstatesciences.2024.107709","url":null,"abstract":"<div><div>We discuss recent doubts about the true ground-state (GS) structure of the intermetallic compound Fe<sub>3</sub>Al. It seems that it should be the D0<sub>3</sub> structure (observed experimentally), but there are some considerations that, perhaps, D0<sub>3</sub> might be a high-temperature (>400 K) structure and the GS at 0 K might be the L1<sub>2</sub> structure because there might be a high energy barrier between both structures and, when the temperature is lowered, the system is not able to transform into the (perhaps) lower-energy L1<sub>2</sub> structure. To elucidate this problem, we re-interpret our recent extended ab initio electronic structure calculations for Fe<sub>3</sub>Al performed with the help of the VASP code and using various exchange-correlation energies within the generalized gradient approximation (GGA). Regrettably, some calculations provide the L1<sub>2</sub> and some of them D0<sub>3</sub> as the GS structure.</div><div>To resolve this question, we performed further calculations testing 9 frequently applied metaGGAs, such as TPSS, revTPSS, M06-L, SCAN(-L), rSCAN(-L) and r<sup>2</sup>SCAN(-L) representing a higher rung of the Jacob's ladder. It turns out that also here some meta-GGAs lead to L1<sub>2</sub> and some others to D0<sub>3</sub> GS structure and, again, we cannot decide.</div><div>In this way, the present results represent the very first step on the way to understand the energetics of the Fe<sub>3</sub>Al compound and its ground state. We hope they may motivate future theoretical and experimental work in this direction.</div></div>","PeriodicalId":432,"journal":{"name":"Solid State Sciences","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142320263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Solid State SciencesPub Date : 2024-09-21DOI: 10.1016/j.solidstatesciences.2024.107708
{"title":"Tuning conduction properties and clarifying thermoelectric performance of P-type half-heusler alloys TiNi1−xCoxSn (0 ≤ x ≤ 0.15)","authors":"","doi":"10.1016/j.solidstatesciences.2024.107708","DOIUrl":"10.1016/j.solidstatesciences.2024.107708","url":null,"abstract":"<div><div>TiNiSn is an N-type thermoelectric material with a high-power factor composed of low toxicity and abundant elements. TiNiSn also shows P-type electrical conduction by hole doping. In this study, we tune the conduction properties of TiNi<sub>1−<em>x</em></sub>Co<sub><em>x</em></sub>Sn (0 ≤ <em>x</em> ≤ 0.15) with Co substitution at the Ni site. The samples were prepared by the arc melting method, and thermoelectric properties were investigated up to 800 K. The results of the Hall effect and the Seebeck coefficient measurements indicate that the majority of charge carriers changes from electrons to holes at <em>x</em> ≥ 0.03, suggesting that Co acts as an acceptor. We report for the first time that Ti<sub>0.994</sub>Ni<sub>1.00</sub>Co<sub>0.051</sub>Sn<sub>1.01</sub> exhibits <em>ZT</em> = 0.12 at 675 K. This work reveals that Ti<sub>0.994</sub>Ni<sub>1.00</sub>Co<sub>0.051</sub>Sn<sub>1.01</sub> could be a potential P-type thermoelectric material operating at high temperatures.</div></div>","PeriodicalId":432,"journal":{"name":"Solid State Sciences","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142315313","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Solid State SciencesPub Date : 2024-09-20DOI: 10.1016/j.solidstatesciences.2024.107705
{"title":"First copper (II) oxo-selenite-sulfate Cu4O(SeO3)(SO4)2 and the role of a lone electron pair in open framework crystal structure formation","authors":"","doi":"10.1016/j.solidstatesciences.2024.107705","DOIUrl":"10.1016/j.solidstatesciences.2024.107705","url":null,"abstract":"<div><div>New copper oxo-selenite-sulfate Cu<sub>4</sub>O(SeO<sub>3</sub>)(SO<sub>4</sub>)<sub>2</sub> was prepared by the reaction of anhydrous CuSO<sub>4</sub>, CuO, and SeO<sub>2</sub> in a sealed silica tube. The compound crystallizes in the triclinic <span><math><mrow><mi>P</mi><mover><mn>1</mn><mo>‾</mo></mover></mrow></math></span> space group, with cell parameters <em>a</em> = 8.379(3)Å, <em>b</em> = 8.402(4) Å, <em>c</em> = 8.497(3) Å, α = 82.988(14) °, β = 61.006(9) °, γ = 62.105(14)°. The selenite-sulfate features open-framework crystal structure with two types of channels, where lone electron pairs of SeO<sub>3</sub><sup>2−</sup> groups are located. DFT calculations were made to support this statement and to investigate the nature of chemical bonding in the crystal structure and estimate the band gap (3.3 eV).</div><div>The crystal structure of Cu<sub>4</sub>O(SeO<sub>3</sub>)(SO<sub>4</sub>)<sub>2</sub> was compared to the related triclinic form of Cu<sub>4</sub>O(SeO<sub>3</sub>)<sub>3</sub>. The role of sulfate groups is also discussed.</div></div>","PeriodicalId":432,"journal":{"name":"Solid State Sciences","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142312337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Solid State SciencesPub Date : 2024-09-19DOI: 10.1016/j.solidstatesciences.2024.107704
{"title":"Synthesis, structure, third-order nonlinear optical properties and Hirshfeld surface analysis of 18-crown-6 with dimethylpyridin-1-ium iodide isomers","authors":"","doi":"10.1016/j.solidstatesciences.2024.107704","DOIUrl":"10.1016/j.solidstatesciences.2024.107704","url":null,"abstract":"<div><p>Supramolecular complexes of 18-crown-6 with isomers of dimethylpyridin-1-ium iodide have been successfully synthesized and characterized using various analytical techniques, including single-crystal X-ray diffraction (SCXRD). SCXRD study revealed the crystal structures of bis(1,2-dimethylpyridin-1-ium iodide)-18-crown-6 (I) with a monoclinic structure in the centric space group P2<sub>1</sub>/<em>n</em>, bis(1,3-dimethylpyridin-1-ium iodide)-18-crown-6 (II), and bis(1,4-dimethylpyridin-1-ium iodide)-18-crown-6 (III), both exhibiting triclinic structures in the centric space group Pī. The band gap energies are determined using diffuse reflectance data through the Kubelka-Munk algorithm. The thermal stability of these cocrystals was assessed through differential thermal and thermogravimetric studies, while their surface morphology was analyzed using scanning electron microscopy. The third-order nonlinear optical susceptibilities of cocrystals (I), (II), and (III) were measured at 3.54 × 10<sup>−6</sup> esu, 4.05 × 10<sup>−6</sup> esu, and 4.08 × 10<sup>−6</sup> esu, respectively, indicating their promising utility in nonlinear optical applications.</p></div>","PeriodicalId":432,"journal":{"name":"Solid State Sciences","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142272869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Solid State SciencesPub Date : 2024-09-18DOI: 10.1016/j.solidstatesciences.2024.107706
{"title":"Isopropanol assisted preparation of α-Al2O3 nanoparticles and its surface charge investigation","authors":"","doi":"10.1016/j.solidstatesciences.2024.107706","DOIUrl":"10.1016/j.solidstatesciences.2024.107706","url":null,"abstract":"<div><p>The crystal and particle size distribution of α-alumina (α-Al<sub>2</sub>O<sub>3</sub>) nanoparticles is increasingly important for their potential application. However, it is difficult to produce α-Al<sub>2</sub>O<sub>3</sub> nanoparticles due to the high activation energy barrier making it difficult to obtain a pure α-Al₂O₃. In this paper, α-Al<sub>2</sub>O<sub>3</sub> nanoparticles with an average size of 60 nm in width and about 100–300 nm in length were prepared using isopropanol through thermal treatment at 1200 °C, accompanied by a minor fraction of the θ phase. Addressing the challenge of achieving pure phase α-Al<sub>2</sub>O<sub>3</sub>, Density Functional Theory (DFT) calculation was conducted to explore the energy landscape similarity between the θ and α crystal phases. The results provided valuable insights into obstacles associated with obtaining pure α-Al<sub>2</sub>O<sub>3</sub>, enlightening the relationship between surface electronegativity and crystal phases. Furthermore, X-ray Photoelectron Spectroscopy and electrochemical tests were employed to demonstrate that the α phase could enhance the surface electronegativity of Al<sub>2</sub>O<sub>3</sub>. This comprehensive study not only encompasses the synthesis of Al<sub>2</sub>O<sub>3</sub> nanoparticles but also elucidates the distinctions between α and θ phases. These results offer valuable insights into methods optimizing for the synthesis of pure phase α-Al₂O₃.</p></div>","PeriodicalId":432,"journal":{"name":"Solid State Sciences","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142272868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Solid State SciencesPub Date : 2024-09-17DOI: 10.1016/j.solidstatesciences.2024.107703
{"title":"Crystal phase stability and barocaloric efficiency of (NH4)3WO2F5","authors":"","doi":"10.1016/j.solidstatesciences.2024.107703","DOIUrl":"10.1016/j.solidstatesciences.2024.107703","url":null,"abstract":"<div><p>Calorimetric, dilatometric and pressure studies of (NH<sub>4</sub>)<sub>3</sub>WO<sub>2</sub>F<sub>5</sub> were performed over a wide temperature range, including the <em>Pm</em>-3<em>m</em> ↔ <em>Pa</em>-3 phase transition. Comparison of the obtained results with data for related fluorides (NH<sub>4</sub>)<sub>3</sub>SnF<sub>7</sub> and (NH<sub>4</sub>)<sub>3</sub>TiF<sub>7</sub> undergoing the same structural changes showed a significant role of chemical pressure in the formation of thermal and barocaloric properties. A decrease in anomalous entropy in oxyfluoride, Δ<em>S</em><sub>0</sub> = 12.2 J/mol·K, is accompanied by a significant increase in sensitivity to hydrostatic pressure, <em>dT</em><sub>0</sub>/<em>dp</em> = 93 K/GPa, the preservation of a large change in anomalous deformation δ(Δ<em>V</em>/<em>V</em>)<sub>0</sub> = 0.45 % and a small temperature hysteresis, δ<em>T</em><sub>0</sub> < 1 K. This combination of thermal characteristics has led to both a significant increase in extensive and intensive barocaloric parameters in the low pressures area, and to their high reversibility in the modes of increasing and decreasing pressure.</p></div>","PeriodicalId":432,"journal":{"name":"Solid State Sciences","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142272867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Solid State SciencesPub Date : 2024-09-17DOI: 10.1016/j.solidstatesciences.2024.107695
{"title":"Synthesis of Trimanganese Tetraoxide (Mn3O4) as a promising electrode and Photocatalyst for the degradation of Rhodamine B dye","authors":"","doi":"10.1016/j.solidstatesciences.2024.107695","DOIUrl":"10.1016/j.solidstatesciences.2024.107695","url":null,"abstract":"<div><p>The article involves the facile bio-synthesis of Manganese (III) Oxide (Mn<sub>3</sub>O<sub>4</sub>) nanoparticles (NPs) using Curry leaf (<em>Murraya Koenigii</em>) extract as an efficacious chelating agent. The prepared NPs were subjected to various characterization methods such as Powder X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) with Energy Dispersive X-Ray (EDX) Analysis, Transmission Electron Microscopy (TEM), Fourier Transform Infrared analysis (FTIR), Ultra Violet spectroscopy study (UV–Vis), Cyclic Voltammetry (CV) and Vibrating Sample Magnetometer (VSM) to study the crystalline structure, morphology, optical properties, electrochemical activity and magnetic property of the sample. The XRD result proved the crystallinity of the sample having crystallite size around 15 nm with tetragonal structure. The absorption band observed at 612 cm<sup>−1</sup> indicates the Mn-O stretching modes of tetrahedral sites in FTIR analysis of the prepared sample which confirmed the formation of Mn<sub>3</sub>O<sub>4</sub> NPs. Using SEM and TEM techniques, the surface morphology and NPs size were examined. The composition and distribution of the NPs was verified using EDX spectrum and elemental mapping. Using the UV–Visible spectroscopy, the energy band gap (Eg) for the NPs was computed and calculated as 2.34 eV. The Mn<sub>3</sub>O<sub>4</sub> NPs evinced a specific capacitance of 276 Fg<sup>-1</sup> at 10 mV/s scan rate. This result proposes that the obtained Mn<sub>3</sub>O<sub>4</sub> NPs can be used as a suitable electrode mainly for supercapacitor applications. VSM study revealed the paramagnetic behavior of the synthesized Mn<sub>3</sub>O<sub>4</sub> NPs. The synthesized Mn<sub>3</sub>O<sub>4</sub> NPs exhibited moderate antibacterial activity with gram positive bacteria such as <em>Staphylococcus aureus</em>, <em>Streptococcus pneumoniae</em>, and gram negative bacteria such as <em>Klebsiella pneumoniae</em>, with the inhibition zones of 12, 10, and 9 mm respectively. Photo catalytic degradation study was carried out for Rhodamine B (RhB) dye, which showed a strong characteristic absorption peak nearly at 554 nm with 94 % of degradation efficiency.</p></div>","PeriodicalId":432,"journal":{"name":"Solid State Sciences","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142243265","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Solid State SciencesPub Date : 2024-09-16DOI: 10.1016/j.solidstatesciences.2024.107702
{"title":"Synthesis, characterization and application of an orange-red-emitting InGaZnO4:Eu3+ phosphor in latent fingerprint and security ink","authors":"","doi":"10.1016/j.solidstatesciences.2024.107702","DOIUrl":"10.1016/j.solidstatesciences.2024.107702","url":null,"abstract":"<div><p>A series of orange-red InGaZnO<sub>4</sub>:<em>x</em>Eu<sup>3+</sup> (0.2 mol% ≤ <em>x</em> ≤ 20 mol%) phosphors were successfully synthesized via high-temperature solid-state reaction. The structural characterization, morphology, elemental analysis, and optical properties of the prepared phosphors were extensively discussed. Under 468 nm excitation, the prepared phosphors emit orange-red light at 614 nm and 625 nm due to the electric dipole (ED) transition from the <sup>5</sup>D<sub>0</sub> to <sup>7</sup>F<sub>2</sub> level of Eu<sup>3+</sup>. The emission peak at 593 nm is attributed to the magnetic dipole (MD) transition. The optimal doping concentration of Eu<sup>3+</sup> in the phosphor is 2 mol%, resulting in excellent color purity, with all samples exhibiting purity levels exceeding 99.9 %. Furthermore, the phosphors demonstrate remarkable thermal stability, retaining 73.5 % of their luminescent intensity at 420 K and surpassing a thermal quenching temperature of 480 K. The calculated activation energy (E<sub>a</sub>) of InGaZnO<sub>4</sub>:2 mol%Eu³⁺ (0.27 eV) further underscores its exceptional thermal stability. The internal quantum efficiency (IQE) of the InGaZnO<sub>4</sub>:2 mol%Eu<sup>3+</sup> phosphor is measured at 46.3 %, indicating a high level of photoelectric conversion efficiency. Latent fingerprints (LFPs) developed using the InGaZnO<sub>4</sub>:2 mol%Eu<sup>3+</sup> phosphor display outstanding selectivity and contrast, allowing for precise identification of Level I-III fingerprint details. Additionally, security ink formulated with InGaZnO<sub>4</sub>:2 mol%Eu<sup>3+</sup> shows potential applications in information encryption and anti-counterfeiting measures. Therefore, the investigated phosphors exhibit significant potential for further development due to their favorable optical properties.</p></div>","PeriodicalId":432,"journal":{"name":"Solid State Sciences","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142243270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Solid State SciencesPub Date : 2024-09-14DOI: 10.1016/j.solidstatesciences.2024.107701
{"title":"Carbon-doped CuO nanoparticle-constructed single tube adsorbent for high efficient adsorption of Pb2+ at near room temperature","authors":"","doi":"10.1016/j.solidstatesciences.2024.107701","DOIUrl":"10.1016/j.solidstatesciences.2024.107701","url":null,"abstract":"<div><p>How to prepare adsorbents using economical, environmentally friendly and simple methods has become the focus of research. In this paper, silk cotton (SC) was used as a biomass template impregnated with copper nitrate solution and then calcined to prepare CuO-based adsorbent. Carbon-doped CuO (C/CuO-400) adsorbent was obtained under 400 °C air calcination calcination. It completely replicates the morphology of kapok and consists of uniformly smaller nanoparticles. The effects of different calcination temperatures, adsorption temperatures, adsorption times, adsorbent dosages and different concentrations on the adsorption of lead ions were investigated. The results showed that C/CuO-400 had a good adsorption effect on Pb<sup>2+</sup>, which was suitable for Pseudo second-order and Langmuir, and the maximum adsorption amount of Pb<sup>2+</sup> was 588.24 mg/g with good Reusability. This environmentally friendly, economical and simple to operate biomass template prepared adsorbent of single tube C/CuO has good adsorption effect on lead ions, which is very meaningful and easy to promote the preparation of adsorbent.</p></div>","PeriodicalId":432,"journal":{"name":"Solid State Sciences","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142243263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}