{"title":"On a group pursuit problem on time scales","authors":"E.S. Mozhegova","doi":"10.35634/vm230109","DOIUrl":"https://doi.org/10.35634/vm230109","url":null,"abstract":"In a finite-dimensional Euclidean space $mathbb R^k$, we consider a linear problem of pursuit of one evader by a group of pursuers, which is described on the given time scale $mathbb{T}$ by equations of the form\u0000begin{gather*}\u0000 z_i^{Delta} = a z_i + u_i - v,\u0000end{gather*}\u0000where $z_i^{Delta}$ is the $Delta$-derivative of the functions $z_i$ on the time scale $mathbb{T}$, $a$ is an arbitrary number not equal to zero. The set of admissible controls for each participant is a unit ball centered at the origin, the terminal sets are given convex compact sets in $mathbb R^k$. The pursuers act according to the counter-strategies based on the information about the initial positions and the evader control history. In terms of initial positions and game parameters, a sufficient capture condition has been obtained. For the case of setting the time scale in the form $mathbb T = { tau k mid k in mathbb Z, tau in mathbb R, tau >0}$ sufficient pursuit and evasion problems solvability conditions have been found. In the study, in both cases, the resolving function method is used as basic one.","PeriodicalId":43239,"journal":{"name":"Vestnik Udmurtskogo Universiteta-Matematika Mekhanika Kompyuternye Nauki","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81711323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Integration of the Korteweg-de Vries equation with loaded terms and a self-consistent source in the class of rapidly decreasing functions","authors":"U. Hoitmetov, T. G. Khasanov","doi":"10.35634/vm230111","DOIUrl":"https://doi.org/10.35634/vm230111","url":null,"abstract":"In this paper, we solve the Cauchy problem for the Korteweg-de Vries equation with loaded terms and a self-consistent source in the class of rapidly decreasing functions. To solve this problem, the method of the inverse scattering problem is used. The evolution of the scattering data of the self-adjoint Sturm-Liouville operator, whose coefficient is a solution of the Korteweg-de Vries equation with loaded terms and a self-consistent source, is obtained. Examples are given to illustrate the application of the obtained results.","PeriodicalId":43239,"journal":{"name":"Vestnik Udmurtskogo Universiteta-Matematika Mekhanika Kompyuternye Nauki","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84451182","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Delta-functions on recurrent random walks","authors":"V.R. Manivannan, M. Venkataraman","doi":"10.35634/vm230108","DOIUrl":"https://doi.org/10.35634/vm230108","url":null,"abstract":"If a random walk on a countable infinite state space is reversible, there are known necessary and sufficient conditions for the walk to be recurrent. When the condition of reversibility is dropped, by using discrete Dirichlet solutions and balayage (concepts familiar in potential theory) one could partially retrieve some of the above results concerning the recurrence and the transience of the random walk.","PeriodicalId":43239,"journal":{"name":"Vestnik Udmurtskogo Universiteta-Matematika Mekhanika Kompyuternye Nauki","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89598148","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On essential values of Sergeev's frequencies and exponents of oscillation for solutions of a third-order linear differential periodic equation","authors":"A. Stash","doi":"10.35634/vm230110","DOIUrl":"https://doi.org/10.35634/vm230110","url":null,"abstract":"In this paper, we study various types of Sergeev's frequencies and exponents of oscillation for solutions of linear homogeneous differential equations with continuous bounded coefficients. For any preassigned natural number $N$, a periodic third-order linear differential equation is constructively built in this paper, which has the property that its upper and lower Sergeev frequency spectra of strict signs, zeros and roots, as well as the spectra of all upper and lower strong and weak oscillation indices of strict and non-strict signs, zeros, roots and hyperroots contain the same set, consisting of $N$ different essential values, both metrically and topologically. Moreover, all these values are implemented on the same set of solutions of the constructed equation, that is, for each solution from this set, all the frequencies listed above and the oscillation exponents coincide with each other. When constructing the indicated equation and proving the required results, analytical methods of the qualitative theory of differential equations were used, in particular, methods of the theory of perturbations of solutions of linear differential equations, as well as the author's technique for controlling the fundamental system of solutions of such equations in one particular case.","PeriodicalId":43239,"journal":{"name":"Vestnik Udmurtskogo Universiteta-Matematika Mekhanika Kompyuternye Nauki","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80119872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Periodic perturbation of motion of an unbalanced circular foil in the presence of point vortices in an ideal fluid","authors":"E. V. Vetchanin, I. Mamaev","doi":"10.35634/vm220409","DOIUrl":"https://doi.org/10.35634/vm220409","url":null,"abstract":"The dynamics of a system governing the controlled motion of an unbalanced circular foil in the presence of point vortices is considered. The foil motion is controlled by periodically changing the position of the center of mass, the gyrostatic momentum, and the moment of inertia of the system. A derivation of the equations of motion based on Sedov's approach is proposed, the equations of motion are presented in the Hamiltonian form. A periodic perturbation of the known integrable case is considered.","PeriodicalId":43239,"journal":{"name":"Vestnik Udmurtskogo Universiteta-Matematika Mekhanika Kompyuternye Nauki","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76499377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Model of deformations of a Stieltjes string system with a nonlinear condition","authors":"M. Zvereva","doi":"10.35634/vm220403","DOIUrl":"https://doi.org/10.35634/vm220403","url":null,"abstract":"In the present paper we study a model of deformations for a system of n Stieltjes strings located along a geometric graph-star with a nonlinear condition at the node","PeriodicalId":43239,"journal":{"name":"Vestnik Udmurtskogo Universiteta-Matematika Mekhanika Kompyuternye Nauki","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87218865","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Dynamic programming and questions of solvability of route bottleneck problem with resource constraints","authors":"A. G. Chentsov, A. Chentsov","doi":"10.35634/vm220406","DOIUrl":"https://doi.org/10.35634/vm220406","url":null,"abstract":"The article deals with the problem of admissible routing for a system of cycles each of which contains exterior permutation and works connected with megalopolises (non-empty finite sets) visiting. In the initial setting, a resource constraint is given; this constraint should be fulfilled for every cycle under permutation. The solvability conditions in this problem are connected with the extremum of the auxiliary bottleneck routing problem without above-mentioned constraint, in which the apparatus of widely understood dynamic programming (DP) is used. A particular case of the setting is the known bottleneck courier problem which can be used (in particular) for routing a vehicle (airplane or helicopter) aiming to realize the given shipping system with a limited fuel reserve on each flight. An algorithm implemented on a personal computer is constructed.","PeriodicalId":43239,"journal":{"name":"Vestnik Udmurtskogo Universiteta-Matematika Mekhanika Kompyuternye Nauki","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82548827","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A mean field type differential inclusion with upper semicontinuous right-hand side","authors":"Y. Averboukh","doi":"10.35634/vm220401","DOIUrl":"https://doi.org/10.35634/vm220401","url":null,"abstract":"Mean field type differential inclusions appear within the theory of mean field type control through the convexification of a right-hand side. We study the case when the right-hand side of a differential inclusion depends on the state of an agent and the distribution of agents in an upper semicontinuous way. The main result of the paper is the existence and the stability of the solution of a mean field type differential inclusion. Furthermore, we show that the value function of the mean field type optimal control problem depends on an initial state and a parameter semicontinuously.","PeriodicalId":43239,"journal":{"name":"Vestnik Udmurtskogo Universiteta-Matematika Mekhanika Kompyuternye Nauki","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80882606","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Finite-difference method for solving a multidimensional pseudoparabolic equation with boundary conditions of the third kind","authors":"M. Beshtokov","doi":"10.35634/vm220402","DOIUrl":"https://doi.org/10.35634/vm220402","url":null,"abstract":"We study an initial-boundary value problem for a multidimensional pseudoparabolic equation with variable coefficients and boundary conditions of the third kind. The multidimensional pseudoparabolic equation is reduced to an integro-differential equation with a small parameter. It is shown that as the small parameter tends to zero, the solution of the resulting modified problem converges to the solution of the original problem. For an approximate solution of the obtained problem, a locally one-dimensional difference scheme by A. A. Samarsky is constructed. An a priori estimate is obtained by the method of energy inequalities, from which the uniqueness, stability, and convergence of the solution of the locally one-dimensional difference scheme to the solution of the original differential problem follow. For a two-dimensional problem, an algorithm for the numerical solution of the initial-boundary value problem for a pseudoparabolic equation with conditions of the third kind is developed.","PeriodicalId":43239,"journal":{"name":"Vestnik Udmurtskogo Universiteta-Matematika Mekhanika Kompyuternye Nauki","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79928292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Numerical analysis of the periodic controls of an aquatic robot","authors":"E. V. Vetchanin, I. Mamaev","doi":"10.35634/vm220410","DOIUrl":"https://doi.org/10.35634/vm220410","url":null,"abstract":"A model governing the motion of an aquatic robot with a shell in the form of a symmetrical airfoil NACA0040 is considered. The motion is controlled by periodic oscillations of the rotor. It is numerically shown that for physically admissible values of the control parameters in the phase space of the system, there exists only one limit cycle. The limit cycle that occurs under symmetric control corresponds to the motion of the robot near a straight line. In the case of asymmetric controls, the robot moves near a circle. An algorithm for controlling the course of the robot motion is proposed. This algorithm uses determined limit cycles and transient processes between them.","PeriodicalId":43239,"journal":{"name":"Vestnik Udmurtskogo Universiteta-Matematika Mekhanika Kompyuternye Nauki","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82958510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}