在时间尺度上的群体追逐问题

IF 0.6 Q3 MATHEMATICS
E.S. Mozhegova
{"title":"在时间尺度上的群体追逐问题","authors":"E.S. Mozhegova","doi":"10.35634/vm230109","DOIUrl":null,"url":null,"abstract":"In a finite-dimensional Euclidean space $\\mathbb R^k$, we consider a linear problem of pursuit of one evader by a group of pursuers, which is described on the given time scale $\\mathbb{T}$ by equations of the form\n\\begin{gather*}\n z_i^{\\Delta} = a z_i + u_i - v,\n\\end{gather*}\nwhere $z_i^{\\Delta}$ is the $\\Delta$-derivative of the functions $z_i$ on the time scale $\\mathbb{T}$, $a$ is an arbitrary number not equal to zero. The set of admissible controls for each participant is a unit ball centered at the origin, the terminal sets are given convex compact sets in $\\mathbb R^k$. The pursuers act according to the counter-strategies based on the information about the initial positions and the evader control history. In terms of initial positions and game parameters, a sufficient capture condition has been obtained. For the case of setting the time scale in the form $\\mathbb T = \\{ \\tau k \\mid k \\in \\mathbb Z,\\ \\tau \\in \\mathbb R,\\ \\tau >0\\}$ sufficient pursuit and evasion problems solvability conditions have been found. In the study, in both cases, the resolving function method is used as basic one.","PeriodicalId":43239,"journal":{"name":"Vestnik Udmurtskogo Universiteta-Matematika Mekhanika Kompyuternye Nauki","volume":"20 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On a group pursuit problem on time scales\",\"authors\":\"E.S. Mozhegova\",\"doi\":\"10.35634/vm230109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In a finite-dimensional Euclidean space $\\\\mathbb R^k$, we consider a linear problem of pursuit of one evader by a group of pursuers, which is described on the given time scale $\\\\mathbb{T}$ by equations of the form\\n\\\\begin{gather*}\\n z_i^{\\\\Delta} = a z_i + u_i - v,\\n\\\\end{gather*}\\nwhere $z_i^{\\\\Delta}$ is the $\\\\Delta$-derivative of the functions $z_i$ on the time scale $\\\\mathbb{T}$, $a$ is an arbitrary number not equal to zero. The set of admissible controls for each participant is a unit ball centered at the origin, the terminal sets are given convex compact sets in $\\\\mathbb R^k$. The pursuers act according to the counter-strategies based on the information about the initial positions and the evader control history. In terms of initial positions and game parameters, a sufficient capture condition has been obtained. For the case of setting the time scale in the form $\\\\mathbb T = \\\\{ \\\\tau k \\\\mid k \\\\in \\\\mathbb Z,\\\\ \\\\tau \\\\in \\\\mathbb R,\\\\ \\\\tau >0\\\\}$ sufficient pursuit and evasion problems solvability conditions have been found. In the study, in both cases, the resolving function method is used as basic one.\",\"PeriodicalId\":43239,\"journal\":{\"name\":\"Vestnik Udmurtskogo Universiteta-Matematika Mekhanika Kompyuternye Nauki\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vestnik Udmurtskogo Universiteta-Matematika Mekhanika Kompyuternye Nauki\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35634/vm230109\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vestnik Udmurtskogo Universiteta-Matematika Mekhanika Kompyuternye Nauki","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35634/vm230109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在有限维欧几里得空间中 $\mathbb R^k$在给定的时间尺度上,我们考虑一个线性问题,即一群追逐者追逐一个逃避者 $\mathbb{T}$ 通过这样的方程\begin{gather*} z_i^{\Delta} = a z_i + u_i - v,\end{gather*}在哪里 $z_i^{\Delta}$ 是? $\Delta$函数的导数 $z_i$ 在时间尺度上 $\mathbb{T}$, $a$ 是一个不等于零的任意数。每个参与者的允许控制集是一个以原点为中心的单位球,终端集被给定为凸紧集 $\mathbb R^k$. 追捕者根据初始位置信息和逃避者控制历史的反策略采取行动。在初始位置和博弈参数方面,得到了充分的捕获条件。用于在表单中设置时间刻度的情况 $\mathbb T = \{ \tau k \mid k \in \mathbb Z,\ \tau \in \mathbb R,\ \tau >0\}$ 找到了充分的追逃问题可解性条件。在这两种情况下,研究中都采用了解析函数法作为基本方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On a group pursuit problem on time scales
In a finite-dimensional Euclidean space $\mathbb R^k$, we consider a linear problem of pursuit of one evader by a group of pursuers, which is described on the given time scale $\mathbb{T}$ by equations of the form \begin{gather*} z_i^{\Delta} = a z_i + u_i - v, \end{gather*} where $z_i^{\Delta}$ is the $\Delta$-derivative of the functions $z_i$ on the time scale $\mathbb{T}$, $a$ is an arbitrary number not equal to zero. The set of admissible controls for each participant is a unit ball centered at the origin, the terminal sets are given convex compact sets in $\mathbb R^k$. The pursuers act according to the counter-strategies based on the information about the initial positions and the evader control history. In terms of initial positions and game parameters, a sufficient capture condition has been obtained. For the case of setting the time scale in the form $\mathbb T = \{ \tau k \mid k \in \mathbb Z,\ \tau \in \mathbb R,\ \tau >0\}$ sufficient pursuit and evasion problems solvability conditions have been found. In the study, in both cases, the resolving function method is used as basic one.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
40.00%
发文量
27
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信