在时间尺度上的群体追逐问题

Pub Date : 2023-03-01 DOI:10.35634/vm230109
E.S. Mozhegova
{"title":"在时间尺度上的群体追逐问题","authors":"E.S. Mozhegova","doi":"10.35634/vm230109","DOIUrl":null,"url":null,"abstract":"In a finite-dimensional Euclidean space $\\mathbb R^k$, we consider a linear problem of pursuit of one evader by a group of pursuers, which is described on the given time scale $\\mathbb{T}$ by equations of the form\n\\begin{gather*}\n z_i^{\\Delta} = a z_i + u_i - v,\n\\end{gather*}\nwhere $z_i^{\\Delta}$ is the $\\Delta$-derivative of the functions $z_i$ on the time scale $\\mathbb{T}$, $a$ is an arbitrary number not equal to zero. The set of admissible controls for each participant is a unit ball centered at the origin, the terminal sets are given convex compact sets in $\\mathbb R^k$. The pursuers act according to the counter-strategies based on the information about the initial positions and the evader control history. In terms of initial positions and game parameters, a sufficient capture condition has been obtained. For the case of setting the time scale in the form $\\mathbb T = \\{ \\tau k \\mid k \\in \\mathbb Z,\\ \\tau \\in \\mathbb R,\\ \\tau >0\\}$ sufficient pursuit and evasion problems solvability conditions have been found. In the study, in both cases, the resolving function method is used as basic one.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On a group pursuit problem on time scales\",\"authors\":\"E.S. Mozhegova\",\"doi\":\"10.35634/vm230109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In a finite-dimensional Euclidean space $\\\\mathbb R^k$, we consider a linear problem of pursuit of one evader by a group of pursuers, which is described on the given time scale $\\\\mathbb{T}$ by equations of the form\\n\\\\begin{gather*}\\n z_i^{\\\\Delta} = a z_i + u_i - v,\\n\\\\end{gather*}\\nwhere $z_i^{\\\\Delta}$ is the $\\\\Delta$-derivative of the functions $z_i$ on the time scale $\\\\mathbb{T}$, $a$ is an arbitrary number not equal to zero. The set of admissible controls for each participant is a unit ball centered at the origin, the terminal sets are given convex compact sets in $\\\\mathbb R^k$. The pursuers act according to the counter-strategies based on the information about the initial positions and the evader control history. In terms of initial positions and game parameters, a sufficient capture condition has been obtained. For the case of setting the time scale in the form $\\\\mathbb T = \\\\{ \\\\tau k \\\\mid k \\\\in \\\\mathbb Z,\\\\ \\\\tau \\\\in \\\\mathbb R,\\\\ \\\\tau >0\\\\}$ sufficient pursuit and evasion problems solvability conditions have been found. In the study, in both cases, the resolving function method is used as basic one.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35634/vm230109\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35634/vm230109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在有限维欧几里得空间中 $\mathbb R^k$在给定的时间尺度上,我们考虑一个线性问题,即一群追逐者追逐一个逃避者 $\mathbb{T}$ 通过这样的方程\begin{gather*} z_i^{\Delta} = a z_i + u_i - v,\end{gather*}在哪里 $z_i^{\Delta}$ 是? $\Delta$函数的导数 $z_i$ 在时间尺度上 $\mathbb{T}$, $a$ 是一个不等于零的任意数。每个参与者的允许控制集是一个以原点为中心的单位球,终端集被给定为凸紧集 $\mathbb R^k$. 追捕者根据初始位置信息和逃避者控制历史的反策略采取行动。在初始位置和博弈参数方面,得到了充分的捕获条件。用于在表单中设置时间刻度的情况 $\mathbb T = \{ \tau k \mid k \in \mathbb Z,\ \tau \in \mathbb R,\ \tau >0\}$ 找到了充分的追逃问题可解性条件。在这两种情况下,研究中都采用了解析函数法作为基本方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On a group pursuit problem on time scales
In a finite-dimensional Euclidean space $\mathbb R^k$, we consider a linear problem of pursuit of one evader by a group of pursuers, which is described on the given time scale $\mathbb{T}$ by equations of the form \begin{gather*} z_i^{\Delta} = a z_i + u_i - v, \end{gather*} where $z_i^{\Delta}$ is the $\Delta$-derivative of the functions $z_i$ on the time scale $\mathbb{T}$, $a$ is an arbitrary number not equal to zero. The set of admissible controls for each participant is a unit ball centered at the origin, the terminal sets are given convex compact sets in $\mathbb R^k$. The pursuers act according to the counter-strategies based on the information about the initial positions and the evader control history. In terms of initial positions and game parameters, a sufficient capture condition has been obtained. For the case of setting the time scale in the form $\mathbb T = \{ \tau k \mid k \in \mathbb Z,\ \tau \in \mathbb R,\ \tau >0\}$ sufficient pursuit and evasion problems solvability conditions have been found. In the study, in both cases, the resolving function method is used as basic one.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信