{"title":"On sequential traversal of sets","authors":"A. Chentsov, P. Chentsov","doi":"10.35634/vm210310","DOIUrl":"https://doi.org/10.35634/vm210310","url":null,"abstract":"The problem of sequential traversal of megapolises with precedence conditions is investigated; this problem is oriented to mechanical engineering — CNC metal cutting machines. There is the following setting singularity: the terminal component of additive criterion contains the dependence on the starting point. This singularity leads to the fact that the natural solution procedure based on dynamic programming must be applied individually for every starting point. The investigation goal consists in the construction of an optimizing algorithm for determining a complex including a route (a variant of megapolis numbering), a trajectory, and a starting point. The proposed algorithm realizes an idea of directed enumeration of starting points. This algorithm is realized as a program for PC; computations for model examples are made.","PeriodicalId":43239,"journal":{"name":"Vestnik Udmurtskogo Universiteta-Matematika Mekhanika Kompyuternye Nauki","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77495001","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A numerical method for solving the second initial-boundary value problem for a multidimensional third-order pseudoparabolic equation","authors":"M. Beshtokov","doi":"10.35634/vm210303","DOIUrl":"https://doi.org/10.35634/vm210303","url":null,"abstract":"The work is devoted to the study of the second initial-boundary value problem for a general-form third-order differential equation of pseudoparabolic type with variable coefficients in a multidimensional domain with an arbitrary boundary. In this paper, a multidimensional pseudoparabolic equation is reduced to an integro-differential equation with a small parameter, and a locally one-dimensional difference scheme by A.A. Samarskii is used. Using the maximum principle, an a priori estimate is obtained for the solution of a locally one-dimensional difference scheme in the uniform metric in the $C$ norm. The stability and convergence of the locally one-dimensional difference scheme are proved.","PeriodicalId":43239,"journal":{"name":"Vestnik Udmurtskogo Universiteta-Matematika Mekhanika Kompyuternye Nauki","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88874138","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On the convexity of the reachable set with respect to a part of coordinates at small time intervals","authors":"I. O. Osipov","doi":"10.35634/vm210204","DOIUrl":"https://doi.org/10.35634/vm210204","url":null,"abstract":"We investigate the convexity of the reachable sets for some of the coordinates of nonlinear systems with integral constraints on the control at small time intervals. We have proved sufficient convexity conditions in the form of constraints on the asymptotics of the eigenvalues of the Gramian of the controllability of a linearized system for some of the coordinates. There are two nonlinear third-order systems under study as examples. The system linearized along a trajectory generated by zero control is uncontrollable, and the system in the other example is completely controllable. We investigate the sufficient conditions for convexity of projection of reachable sets. Numerical modeling has been carried out, demonstrating the non-convexity of some projections even for small time intervals.","PeriodicalId":43239,"journal":{"name":"Vestnik Udmurtskogo Universiteta-Matematika Mekhanika Kompyuternye Nauki","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78351237","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Integration of the Harry Dym equation with an integral type source","authors":"G. Urazboev, A. Babadjanova, D. R. Saparbaeva","doi":"10.35634/vm210209","DOIUrl":"https://doi.org/10.35634/vm210209","url":null,"abstract":"In the work, we deduce the evolution of scattering data for a spectral problem associated with the nonlinear evolutionary equation of Harry Dym with a self-consistent source of integral type. The obtained equalities completely determine the scattering data for any $t$, which makes it possible to apply the method of the inverse scattering problem to solve the Cauchy problem for the Harry Dym equation with an integral type source.","PeriodicalId":43239,"journal":{"name":"Vestnik Udmurtskogo Universiteta-Matematika Mekhanika Kompyuternye Nauki","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82431611","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Holomorphic continuation into a matrix ball of functions defined on a piece of its skeleton","authors":"G. Khudayberganov, J. Abdullayev","doi":"10.35634/vm210210","DOIUrl":"https://doi.org/10.35634/vm210210","url":null,"abstract":"The question of the possibility of holomorphic continuation into some domain of functions defined on the entire boundary of this domain has been well studied. The problem of describing functions defined on a part of the boundary that can be extended holomorphically into a fixed domain is attracting more interest. In this article, we reformulate the problem under consideration: Under what conditions can we extend holomorphically to a matrix ball the functions given on a part of its skeleton? We describe the domains into which the integral of the Bochner—Hua Luogeng type for a matrix ball can be extended holomorphically. As the main result, we present the criterion of holomorphic continuation into a matrix ball of functions defined on a part of the skeleton of this matrix ball. The proofs of several results are briefly presented. Some recent advances are highlighted. The results obtained in this article generalize the results of L.A. Aizenberg, A.M. Kytmanov and G. Khudayberganov.","PeriodicalId":43239,"journal":{"name":"Vestnik Udmurtskogo Universiteta-Matematika Mekhanika Kompyuternye Nauki","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80480641","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On nonlocal perturbation of the problem on eigenvalues of differentiation operator on a segment","authors":"N. Imanbaev","doi":"10.35634/vm210202","DOIUrl":"https://doi.org/10.35634/vm210202","url":null,"abstract":"This work is devoted to the construction of a characteristic polynomial of the spectral problem of a first-order differential equation on an interval with a spectral parameter in a boundary value condition with integral perturbation which is an entire analytic function of the spectral parameter. Based on the characteristic polynomial formula, conclusions about the asymptotics of the spectrum of the perturbed spectral problem are established.","PeriodicalId":43239,"journal":{"name":"Vestnik Udmurtskogo Universiteta-Matematika Mekhanika Kompyuternye Nauki","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88039926","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On a generalized boundary value problem for a feedback control system with infinite delay","authors":"M. Afanasova, V. Obukhovskii, G. Petrosyan","doi":"10.35634/vm210201","DOIUrl":"https://doi.org/10.35634/vm210201","url":null,"abstract":"We consider a non-local boundary value problem for a feedback control system described by a semilinear functional-differential inclusion of fractional order with infinite delay in a separable Banach space. The general principle of existence of solutions to the problem in terms of the difference from zero of the topological degree of the corresponding vector field is given. We prove a concrete example (Theorem 6) of the implementation of this general principle. The existence of an optimal solution to the posed problem is proved, which minimizes the given lower semicontinuous quality functional.","PeriodicalId":43239,"journal":{"name":"Vestnik Udmurtskogo Universiteta-Matematika Mekhanika Kompyuternye Nauki","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88907656","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Regularized classical optimality conditions in iterative form for convex optimization problems for distributed Volterra-type systems","authors":"V. Sumin, M. I. Sumin","doi":"10.35634/vm210208","DOIUrl":"https://doi.org/10.35634/vm210208","url":null,"abstract":"We consider the regularization of the classical optimality conditions (COCs) — the Lagrange principle and the Pontryagin maximum principle — in a convex optimal control problem with functional constraints of equality and inequality type. The system to be controlled is given by a general linear functional-operator equation of the second kind in the space $L^m_2$, the main operator of the right-hand side of the equation is assumed to be quasinilpotent. The objective functional of the problem is strongly convex. Obtaining regularized COCs in iterative form is based on the use of the iterative dual regularization method. The main purpose of the regularized Lagrange principle and the Pontryagin maximum principle obtained in the work in iterative form is stable generation of minimizing approximate solutions in the sense of J. Warga. Regularized COCs in iterative form are formulated as existence theorems in the original problem of minimizing approximate solutions. They “overcome” the ill-posedness properties of the COCs and are regularizing algorithms for solving optimization problems. As an illustrative example, we consider an optimal control problem associated with a hyperbolic system of first-order differential equations.","PeriodicalId":43239,"journal":{"name":"Vestnik Udmurtskogo Universiteta-Matematika Mekhanika Kompyuternye Nauki","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87872661","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Stability analysis for the Lienard equation with discontinuous coefficients","authors":"A. V. Platonov","doi":"10.35634/vm210205","DOIUrl":"https://doi.org/10.35634/vm210205","url":null,"abstract":"A nonlinear mechanical system, whose dynamics is described by a vector ordinary differential equation of the Lienard type, is considered. It is assumed that the coefficients of the equation can switch from one set of constant values to another, and the total number of these sets is, in general, infinite. Thus, piecewise constant functions with infinite number of break points on the entire time axis, are used to set the coefficients of the equation. A method for constructing a discontinuous Lyapunov function is proposed, which is applied to obtain sufficient conditions of the asymptotic stability of the zero equilibrium position of the equation studied. The results found are generalized to the case of a nonstationary Lienard equation with discontinuous coefficients of a more general form. As an auxiliary result of the work, some methods for analyzing the question of sign-definiteness and approaches to obtaining estimates for algebraic expressions, that represent the sum of power-type terms with non-stationary coefficients, are developed. The key feature of the study is the absence of assumptions about the boundedness of these non-stationary coefficients or their separateness from zero. Some examples are given to illustrate the established results.","PeriodicalId":43239,"journal":{"name":"Vestnik Udmurtskogo Universiteta-Matematika Mekhanika Kompyuternye Nauki","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75089433","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On the singular Volterra integral equation of the boundary value problem for heat conduction in a degenerating domain","authors":"M. Ramazanov, N. Gulmanov","doi":"10.35634/vm210206","DOIUrl":"https://doi.org/10.35634/vm210206","url":null,"abstract":"In this paper, we consider a singular Volterra type integral equation of the second kind, to which some boundary value problems of heat conduction in domains with a boundary varying with time are reduced by the method of thermal potentials. The peculiarity of such problems is that the domain degenerates into a point at the initial moment of time. Accordingly, a distinctive feature of the integral equation under study is that the integral of the kernel, as the upper limit of integration tends to the lower one, is not equal to zero. This circumstance does not allow solving this equation by the method of successive approximations. We constructed the general solution of the corresponding characteristic equation and found the solution of the complete integral equation by the Carleman–Vekua method of equivalent regularization. It is shown that the corresponding homogeneous integral equation has a nonzero solution.","PeriodicalId":43239,"journal":{"name":"Vestnik Udmurtskogo Universiteta-Matematika Mekhanika Kompyuternye Nauki","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76770844","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}