Applied Computing Review最新文献

筛选
英文 中文
A formal analysis of Dutch Generic Integral Tunnel Design models 荷兰通用整体隧道设计模型的形式化分析
IF 1
Applied Computing Review Pub Date : 2023-03-27 DOI: 10.1145/3555776.3577786
Kevin H. J. Jilissen, P. Dieleman, J. F. Groote
{"title":"A formal analysis of Dutch Generic Integral Tunnel Design models","authors":"Kevin H. J. Jilissen, P. Dieleman, J. F. Groote","doi":"10.1145/3555776.3577786","DOIUrl":"https://doi.org/10.1145/3555776.3577786","url":null,"abstract":"The Generic Integral Tunnel Design (GITO) contains generic models for the tunnel control systems of Rijkswaterstaat, part of the Dutch Ministry of Infrastructure and Water Management. A formal verification of these models advances the safety and reliability of GITO derived tunnel control systems. In this paper, the first known large-scale formalisation of tunnel control systems is presented which transforms GITO models to the formal specification language mCRL2. This transformation is applied to two sub-systems of the GITO to analyse the correctness of the supplied models. In this formal analysis, several deficiencies in the specifications and faults in the existing models are revealed and verified solutions are proposed. Some of the presented faults even find their origin in the legally required standards.","PeriodicalId":42971,"journal":{"name":"Applied Computing Review","volume":"56 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74734020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Machine Learning for VRUs accidents prediction using V2X data 使用V2X数据进行vru事故预测的机器学习
IF 1
Applied Computing Review Pub Date : 2023-03-27 DOI: 10.1145/3555776.3578263
B. Ribeiro, M. J. Nicolau, Alexandre J. T. Santos
{"title":"Machine Learning for VRUs accidents prediction using V2X data","authors":"B. Ribeiro, M. J. Nicolau, Alexandre J. T. Santos","doi":"10.1145/3555776.3578263","DOIUrl":"https://doi.org/10.1145/3555776.3578263","url":null,"abstract":"Intelligent Transportation Systems (ITS) are systems that consist on an complex set of technologies that are applied to road agents, aiming to provide a more efficient and safe usage of the roads. The aspect of safety is particularly important for Vulnerable Road Users (VRUs), which are entities for whose implementation of automatic safety solutions is challenging for their agility and hard to anticipate behavior. However, the usage of ML techniques on Vehicle to Anything (V2X) data has the potential to implement such systems. This paper proposes a VRUs (motorcycles) accident prediction system by using Long Short-Term Memorys (LSTMs) on top of communication data that is generated using the VEINS simulation framework (pairing SUMO and ns-3). Results show that the proposed system is able to predict 96% of the accidents on Scenario A (with a 4.53s Average Prediction Time and a 41% Correct Decision Percentage (CDP) - 78 False Positives (FP)) and 95% on Scenario B (with a 4.44s Average Prediction Time and a 43% CDP - 68 FP).","PeriodicalId":42971,"journal":{"name":"Applied Computing Review","volume":"25 5 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80725191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Performant and Secure Single Sign-On System Using Microservices 基于微服务的高性能安全单点登录系统
IF 1
Applied Computing Review Pub Date : 2023-03-27 DOI: 10.1145/3555776.3577869
Mahyar Tourchi Moghaddam, Andreas Edal Pedersen, William Walter Lillebroe Bolding, T. Worm
{"title":"A Performant and Secure Single Sign-On System Using Microservices","authors":"Mahyar Tourchi Moghaddam, Andreas Edal Pedersen, William Walter Lillebroe Bolding, T. Worm","doi":"10.1145/3555776.3577869","DOIUrl":"https://doi.org/10.1145/3555776.3577869","url":null,"abstract":"The Single Sign-On (SSO) method eases the authentication and authorization process. The solution substantially impacts the users' experience since they only need to authenticate once to access multiple services without re-authenticating. This paper adopts an incremental prototyping approach to develop an SSO system. The research reveals that while SSO improves users' quality of experience, it could imply performance and security issues if traditional architectures are adopted. Thus, a Microservices-based approach with containerization is subsequently proposed to overcome SSO's quality issues in practice. The SSO system is containerized using Docker and managed using Docker Compose. The results show a significant performance and security improvement.","PeriodicalId":42971,"journal":{"name":"Applied Computing Review","volume":"15 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87396157","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Differences in performance, scalability, and cost of using microservice and monolithic architecture 使用微服务和单片架构在性能、可伸缩性和成本上的差异
IF 1
Applied Computing Review Pub Date : 2023-03-27 DOI: 10.1145/3555776.3578725
Przemysław Jatkiewicz, Szymon Okrój
{"title":"Differences in performance, scalability, and cost of using microservice and monolithic architecture","authors":"Przemysław Jatkiewicz, Szymon Okrój","doi":"10.1145/3555776.3578725","DOIUrl":"https://doi.org/10.1145/3555776.3578725","url":null,"abstract":"A microservices-based architecture is a set of small components that communicate with each other using a programming language-independent API [1]. It has been gaining popularity for more than a decade. One of its advantages is greater agility in software development and following modern, agile software development practices [2]. The article presents an experimental study. Two applications with the same business logic and different architecture were developed. Both applications were tested using prepared test cases on the local computer of one of the authors and the Microsoft Azure platform. The results were collected and compared using the JMeter tool. In almost all cases, the monolithic architecture proved to be more efficient. The comparable performance of both architectures occurred when queries were handled by the business logic layer for a relatively long time.","PeriodicalId":42971,"journal":{"name":"Applied Computing Review","volume":"66 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74103822","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Personalized Graph Attention Network for Multivariate Time-series Change Analysis: A Case Study on Long-term Maternal Monitoring 多变量时间序列变化分析的个性化图关注网络——以长期产妇监测为例
IF 1
Applied Computing Review Pub Date : 2023-03-27 DOI: 10.1145/3555776.3577675
Yuning Wang, I. Azimi, M. Feli, A. Rahmani, P. Liljeberg
{"title":"Personalized Graph Attention Network for Multivariate Time-series Change Analysis: A Case Study on Long-term Maternal Monitoring","authors":"Yuning Wang, I. Azimi, M. Feli, A. Rahmani, P. Liljeberg","doi":"10.1145/3555776.3577675","DOIUrl":"https://doi.org/10.1145/3555776.3577675","url":null,"abstract":"Internet-of-Things-based systems have recently emerged, enabling long-term health monitoring systems for the daily activities of individuals. The data collected from such systems are multivariate and longitudinal, which call for tailored analysis techniques to extract the trends and abnormalities in the monitoring. Different methods in the literature have been proposed to identify trends in data. However, they do not include the time dependency and cannot distinguish changes in long-term health data. Moreover, their evaluations are limited to lab settings or short-term analysis. Long-term health monitoring applications require a modeling technique to merge the multisensory data into a meaningful indicator. In this paper, we propose a personalized neural network method to track changes and abnormalities in multivariate health data. Our proposed method leverages convolutional and graph attention layers to produce personalized scores indicating the abnormality level (i.e., deviations from the baseline) of users' data throughout the monitoring. We implement and evaluate the proposed method via a case study on long-term maternal health monitoring. Sleep and stress of pregnant women are remotely monitored using a smartwatch and a mobile application during pregnancy and 3-months postpartum. Our analysis includes 46 women. We build personalized sleep and stress models for each individual using the data from the beginning of the monitoring. Then, we compare the two groups by measuring the data variations. The abnormality scores produced by the proposed method are compared with the findings from the self-report questionnaire data collected in the monitoring and abnormality scores generated by an autoencoder method. The proposed method outperforms the baseline methods in exploring the changes between high-risk and low-risk pregnancy groups. The proposed method's scores also show correlations with the self-report data. Consequently, the results indicate that the proposed method effectively detects the abnormality in multivariate long-term health monitoring.","PeriodicalId":42971,"journal":{"name":"Applied Computing Review","volume":"64 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85777674","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Topic Aware Influential Member Detection in Meetup 主题感知的Meetup中有影响力的成员检测
IF 1
Applied Computing Review Pub Date : 2023-03-27 DOI: 10.1145/3555776.3577684
Arpan Dam, Surya Kumar, Debjyoti Bhattacharjee, Sayan D. Pathak, Bivas Mitra
{"title":"Topic Aware Influential Member Detection in Meetup","authors":"Arpan Dam, Surya Kumar, Debjyoti Bhattacharjee, Sayan D. Pathak, Bivas Mitra","doi":"10.1145/3555776.3577684","DOIUrl":"https://doi.org/10.1145/3555776.3577684","url":null,"abstract":"Hosting popular Meetup events is one of the primary objectives of the Meetup organizers. This paper explores the possibility of inviting a few key influential members to attend Meetup events, who may further influence their followers to attend and boost the popularity of those Meetup events. Importantly, our pilot study reveals that topics of the Meetup events play a key role behind the effectiveness of the influential members. Leveraging this observation, in this paper, we develop Topic Aware Influencer Detection (TAID) heuristics, which recommends (i) top-k influential members Ik, and (ii) top-b influence badges Rb based on the topical interest of a Meetup group. This indicates that Ik. will be most effective in influencing the Meetup members to attend the events hosted on topic Rb. TAID heuristics contains two major blocks (a) influence propagation graph construction, and (b) recommendation generation. Rigorous evaluation of TAID on 1447 Meetup groups with three different topics reveals that TAID comfortably outperforms the baselines by influencing (on average) 15% more Meetup members.","PeriodicalId":42971,"journal":{"name":"Applied Computing Review","volume":"316 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84482779","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Realism versus Performance for Adversarial Examples Against DL-based NIDS 针对基于dl的NIDS的对抗性示例的现实性与性能
IF 1
Applied Computing Review Pub Date : 2023-03-27 DOI: 10.1145/3555776.3577671
Huda Ali Alatwi, C. Morisset
{"title":"Realism versus Performance for Adversarial Examples Against DL-based NIDS","authors":"Huda Ali Alatwi, C. Morisset","doi":"10.1145/3555776.3577671","DOIUrl":"https://doi.org/10.1145/3555776.3577671","url":null,"abstract":"The application of deep learning-based (DL) network intrusion detection systems (NIDS) enables effective automated detection of cyberattacks. Such models can extract valuable features from high-dimensional and heterogeneous network traffic with minimal feature engineering and provide high accuracy detection rates. However, it has been shown that DL can be vulnerable to adversarial examples (AEs), which mislead classification decisions at inference time, and several works have shown that AEs are indeed a threat against DL-based NIDS. In this work, we argue that these threats are not necessarily realistic. Indeed, some general techniques used to generate AE manipulate features in a way that would be inconsistent with actual network traffic. In this paper, we first implement the main AE attacks selected from the literature (FGSM, BIM, PGD, NewtonFool, CW, DeepFool, EN, Boundary, HSJ, ZOO) for two different datasets (WSN-DS and BoT-IoT) and we compare their relative performance. We then analyze the perturbation generated by these attacks and use the metrics to establish a notion of \"attack unrealism\". We conclude that, for these datasets, some of these attacks are performant but not realistic.","PeriodicalId":42971,"journal":{"name":"Applied Computing Review","volume":"198 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86228950","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improving the Quality of Public Transportation by Dynamically Adjusting the Bus Departure Time 动态调整公交发车时间提高公共交通质量
IF 1
Applied Computing Review Pub Date : 2023-03-27 DOI: 10.1145/3555776.3577596
Shuheng Cao, S. Thamrin, Arbee L. P. Chen
{"title":"Improving the Quality of Public Transportation by Dynamically Adjusting the Bus Departure Time","authors":"Shuheng Cao, S. Thamrin, Arbee L. P. Chen","doi":"10.1145/3555776.3577596","DOIUrl":"https://doi.org/10.1145/3555776.3577596","url":null,"abstract":"Nowadays, more and more smart cities around the world are being built. As a part of the smart city, intelligent public transportation plays a very important role. Improving the quality of public transportation by reducing crowdedness and total transit time is a critical issue. To this end, we propose a bus operation prediction model based on deep learning techniques, and use this model to dynamically adjust the bus departure time to improve the bus service quality. Specifically, we first combine bus fare card data and open data, such as weather conditions and traffic accidents, to build models for predicting the number of passengers who board/alight the bus at a stop, the boarding and alighting time, and the bus running time between stops. Then we combine these models to predict the operation of the bus for deciding the best bus departure time within the bus departure interval. Experimental results on real-world data of Taichung City bus route #300 show that our approach to deciding the bus departure time is effective for improving its service quality.","PeriodicalId":42971,"journal":{"name":"Applied Computing Review","volume":"23 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86297252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
POI types characterization based on geographic feature embeddings 基于地理特征嵌入的POI类型表征
IF 1
Applied Computing Review Pub Date : 2023-03-27 DOI: 10.1145/3555776.3577659
Salatiel Dantas Silva, C. E. Campelo, Maxwell Guimarães De Oliveira
{"title":"POI types characterization based on geographic feature embeddings","authors":"Salatiel Dantas Silva, C. E. Campelo, Maxwell Guimarães De Oliveira","doi":"10.1145/3555776.3577659","DOIUrl":"https://doi.org/10.1145/3555776.3577659","url":null,"abstract":"Representing Points of Interest (POI) types, such as restaurants and shopping malls, is crucial to develop computational mechanisms that may assist in tasks such as urban planning and POI recommendation. The POI co-occurrences in different spatial regions have been used to represent POI types in high-dimensional vectors. However, such representations do not consider the geographic features (e.g. streets, buildings, rivers, parks) in the vicinity of POIs which may contribute to characterize such types. In this context, we propose the Geographic Context to Vector (GeoContext2Vec), an approach that relies on geographic features in the POIs' vicinity to generate POI types representation based on embeddings. We carried out an experiment to evaluate the GeoContext2Vec by using a POI type representation from the state-of-the-art that it does not consider geographic features. The promising results show that the geographic information provided by the GeoContext2Vec outperforms the state-of-the-art and demonstrates the relevance of surrouding geographic features on representing POI type more precisely.","PeriodicalId":42971,"journal":{"name":"Applied Computing Review","volume":"185 3 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80002939","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deep-Learning based Trust Management with Self-Adaptation in the Internet of Behavior 行为网络中基于深度学习的自适应信任管理
IF 1
Applied Computing Review Pub Date : 2023-03-27 DOI: 10.1145/3555776.3577694
Hind Bangui, Emilia Cioroaica, Mouzhi Ge, Barbora Buhnova
{"title":"Deep-Learning based Trust Management with Self-Adaptation in the Internet of Behavior","authors":"Hind Bangui, Emilia Cioroaica, Mouzhi Ge, Barbora Buhnova","doi":"10.1145/3555776.3577694","DOIUrl":"https://doi.org/10.1145/3555776.3577694","url":null,"abstract":"Internet of Behavior (IoB) has emerged as a new research paradigm within the context of digital ecosystems, with the support for understanding and positively influencing human behavior by merging behavioral sciences with information technology, and fostering mutual trust building between humans and technology. For example, when automated systems identify improper human driving behavior, IoB can support integrated behavioral adaptation to avoid driving risks that could lead to hazardous situations. In this paper, we propose an ecosystem-level self-adaptation mechanism that aims to provide runtime evidence for trust building in interaction among IoB elements. Our approach employs an indirect trust management scheme based on deep learning, which has the ability to mimic human behaviour and trust building patterns. In order to validate the model, we consider Pay-How-You-Drive vehicle insurance as a showcase of a IoB application aiming to advance the adaptation of business incentives based on improving driver behavior profiling. The experimental results show that the proposed model can identify different driving states with high accuracy, to support the IoB applications.","PeriodicalId":42971,"journal":{"name":"Applied Computing Review","volume":"163 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80312584","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信