使用V2X数据进行vru事故预测的机器学习

IF 0.4 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS
B. Ribeiro, M. J. Nicolau, Alexandre J. T. Santos
{"title":"使用V2X数据进行vru事故预测的机器学习","authors":"B. Ribeiro, M. J. Nicolau, Alexandre J. T. Santos","doi":"10.1145/3555776.3578263","DOIUrl":null,"url":null,"abstract":"Intelligent Transportation Systems (ITS) are systems that consist on an complex set of technologies that are applied to road agents, aiming to provide a more efficient and safe usage of the roads. The aspect of safety is particularly important for Vulnerable Road Users (VRUs), which are entities for whose implementation of automatic safety solutions is challenging for their agility and hard to anticipate behavior. However, the usage of ML techniques on Vehicle to Anything (V2X) data has the potential to implement such systems. This paper proposes a VRUs (motorcycles) accident prediction system by using Long Short-Term Memorys (LSTMs) on top of communication data that is generated using the VEINS simulation framework (pairing SUMO and ns-3). Results show that the proposed system is able to predict 96% of the accidents on Scenario A (with a 4.53s Average Prediction Time and a 41% Correct Decision Percentage (CDP) - 78 False Positives (FP)) and 95% on Scenario B (with a 4.44s Average Prediction Time and a 43% CDP - 68 FP).","PeriodicalId":42971,"journal":{"name":"Applied Computing Review","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine Learning for VRUs accidents prediction using V2X data\",\"authors\":\"B. Ribeiro, M. J. Nicolau, Alexandre J. T. Santos\",\"doi\":\"10.1145/3555776.3578263\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Intelligent Transportation Systems (ITS) are systems that consist on an complex set of technologies that are applied to road agents, aiming to provide a more efficient and safe usage of the roads. The aspect of safety is particularly important for Vulnerable Road Users (VRUs), which are entities for whose implementation of automatic safety solutions is challenging for their agility and hard to anticipate behavior. However, the usage of ML techniques on Vehicle to Anything (V2X) data has the potential to implement such systems. This paper proposes a VRUs (motorcycles) accident prediction system by using Long Short-Term Memorys (LSTMs) on top of communication data that is generated using the VEINS simulation framework (pairing SUMO and ns-3). Results show that the proposed system is able to predict 96% of the accidents on Scenario A (with a 4.53s Average Prediction Time and a 41% Correct Decision Percentage (CDP) - 78 False Positives (FP)) and 95% on Scenario B (with a 4.44s Average Prediction Time and a 43% CDP - 68 FP).\",\"PeriodicalId\":42971,\"journal\":{\"name\":\"Applied Computing Review\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Computing Review\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3555776.3578263\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computing Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3555776.3578263","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

智能交通系统(ITS)是由一套应用于道路代理的复杂技术组成的系统,旨在提供更有效和更安全的道路使用。对于弱势道路使用者(vru)来说,安全方面尤为重要,因为他们的灵活性和难以预测的行为,对他们来说,实施自动安全解决方案是一项挑战。然而,在V2X数据上使用机器学习技术有可能实现这样的系统。本文提出了一种基于基于vein仿真框架(配对SUMO和ns-3)生成的通信数据的长短期记忆(LSTMs)的vru(摩托车)事故预测系统。结果表明,该系统对情景A的预测准确率为96%(平均预测时间为4.53秒,正确决策百分比(CDP)为41%,误报率为78),对情景B的预测准确率为95%(平均预测时间为4.44秒,正确决策百分比为43%,误报率为68)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine Learning for VRUs accidents prediction using V2X data
Intelligent Transportation Systems (ITS) are systems that consist on an complex set of technologies that are applied to road agents, aiming to provide a more efficient and safe usage of the roads. The aspect of safety is particularly important for Vulnerable Road Users (VRUs), which are entities for whose implementation of automatic safety solutions is challenging for their agility and hard to anticipate behavior. However, the usage of ML techniques on Vehicle to Anything (V2X) data has the potential to implement such systems. This paper proposes a VRUs (motorcycles) accident prediction system by using Long Short-Term Memorys (LSTMs) on top of communication data that is generated using the VEINS simulation framework (pairing SUMO and ns-3). Results show that the proposed system is able to predict 96% of the accidents on Scenario A (with a 4.53s Average Prediction Time and a 41% Correct Decision Percentage (CDP) - 78 False Positives (FP)) and 95% on Scenario B (with a 4.44s Average Prediction Time and a 43% CDP - 68 FP).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Computing Review
Applied Computing Review COMPUTER SCIENCE, INFORMATION SYSTEMS-
自引率
40.00%
发文量
8
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信