{"title":"Maneuvering and Seakeeping Performance of a Generic Tug Based on Numerical Simulations","authors":"Y. Zheng, Yuting Jin, L. Yiew, A. Magee","doi":"10.1115/omae2020-18624","DOIUrl":"https://doi.org/10.1115/omae2020-18624","url":null,"abstract":"\u0000 Autonomous tugs may play an important role in future ports, due to the shortage of qualified mariners. A digital twin (mathematical model incorporating a vessel’s hydrodynamic behavior and response, suitable for real-time control) would be needed for autonomous operations. Yet, partly because tugs are generally high-powered and very maneuverable compared to conventional vessels, there is little published data on the hydrodynamic performance of such vessels. As a first step in the development of the tug’s digital twin, the present work studies the maneuvering and seakeeping performance of a generic tug at model scale. Numerical simulations are performed for an approximately 1:10 scale model for standard resistance, static and dynamic captive and seakeeping cases. Reynolds-Averaged Navier-Stokes (RANS) k-ω model is employed for the simulations including the free surface through the Volume of Fluid approach. The hydrodynamic forces and moments on the tug model in the simulations of the standard resistance and the static and dynamic captive cases, as well as the tug model’s motions and the added resistance in headseas, are investigated. The simulation results provide data to build a mathematical maneuvering model for the tug based on 4-DoF MMG manoeuvring model, which serves as the digital twin in this case.","PeriodicalId":427872,"journal":{"name":"Volume 6A: Ocean Engineering","volume":"5 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114655979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Prediction of Wave-Induced Motions and Loads of Ships With Forward Speed by Matching Method","authors":"Hui Li, Baoli Deng, Chunlei Liu, Jian Zou, H. Ren","doi":"10.1115/omae2020-18614","DOIUrl":"https://doi.org/10.1115/omae2020-18614","url":null,"abstract":"\u0000 A novel matching method has been developed to solve the wave-induced motions and loads of ships with forward speed. The fluid domain is divided into two subdomains by a cylindrical control surface: an interior domain and an exterior domain. Unlike the conventional domain decomposition strategy, the control surface is meshless in present method, on which the physical quantities are expanded into Fourier-Laguerre series. Based on forward speed Green function, the source distribution method is adopted to solve the exterior domain. The calculations of boundary integral equation about forward speed Green function over the control surface are performed analytically, and the solution of exterior domain provides a Dirichlet-to-Neumann (DN) relation on the control surface. In the interior domain, the boundary value problem is solved by Rankine source method. In order to be consistent with exterior solution, the control surface is kept meshless. The ship hull is discretized into constant panels. The free-surface is discretized into cubic B-splines to represent the high-order derivatives of velocity potential precisely. Then, the DN relation is used to close the equation system established in the interior domain. Comparisons with known experimental measurements show that the calculations achieve good accuracy. Furthermore, the influences of numerical method used in the exterior domain are described.","PeriodicalId":427872,"journal":{"name":"Volume 6A: Ocean Engineering","volume":"24 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114411573","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Safety Analysis of Liquefied Natural Gas Bunkering and Simultaneous Port Operations for Passenger Ships","authors":"Tommaso Iannaccone, B. Jeong, V. Cozzani, P. Zhou","doi":"10.1115/omae2020-18924","DOIUrl":"https://doi.org/10.1115/omae2020-18924","url":null,"abstract":"\u0000 The use of liquefied natural gas (LNG) has been recognized as an effective alternative fuel for marine propulsion, evidently, a growing number of vessels, including passenger ships, is already running on such a fuel. While LNG bunkering can be performed in several ways, depending on transferred volumes and managerial considerations, the time spent for LNG bunkering is regarded to be a key factor to ensure the cost-effectiveness of such operation, since a minimization of bunkering duration at the berth will make port infrastructures available for more vessels. As a result, passenger embarkment is simultaneously conducted with ship bunkering, which may increase the potential risk to individuals both onboard and nearby. Given this background, this paper is to investigate the potential risk of passenger vessels with the identification of credible scenarios for port operations that can be carried out simultaneously with LNG bunkering. An approach of quantitative risk assessment is applied to determine the risk levels pertinent to proposed scenarios. For frequency analysis, the technique of the fault tree analysis is adopted to integrate the influence of human error and management policy to the likelihood of unwanted events. Consequence analysis is conducted in aids of a commercial software to simulate the impact of LNG dispersion and fires. Research findings have shown that simultaneous operations have a negative impact both on frequency and consequence of accidental scenarios arising from LNG bunkering, taking the risk beyond lower acceptance criteria. Finally, a quantification of the risk increase is proposed to help stakeholders identify criticalities and reduce the risk contributions of simultaneous operations.","PeriodicalId":427872,"journal":{"name":"Volume 6A: Ocean Engineering","volume":"30 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129588692","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Unsteady Wave-Making Resistance of an Accelerating Ship","authors":"Mingxin Li, Zhiming Yuan, R. W. Yeung","doi":"10.1115/omae2020-19350","DOIUrl":"https://doi.org/10.1115/omae2020-19350","url":null,"abstract":"\u0000 To measure the resistance of a ship in a towing tank, the target speed of the ship model is achieved by towing the model from the rest at a given acceleration imposed by the carriage. The fluctuations in resistance are generated because of the impulse effects during rapid acceleration. Such acceleration effects in deep water have been studied by previous works [1–3]. In shallow water, the unsteady effects are expected to be stronger, making the fluctuating resistance persisting longer. In order to predict the unsteady waves and to estimate the unsteady oscillating components in the wave resistance, a numerical method based on 3D unsteady potential-flow theory was developed. An implicit finite-difference algorithm coupled with an iterative boundary integral-equation solution procedure was used to deal with the unsteady linear and nonlinear free-surface condition. The results showed that both the acceleration intensity and water depth have a significant effect on the oscillation amplitude of the unsteady wave resistance as well as other force components. Findings of these computations and comparative evaluation of experimental observation are made where relevant. The findings in the present work can be applied to provide guidance for using the appropriate settings, e.g., magnitude and duration of carriage acceleration, when conducting ship-model resistance tests.","PeriodicalId":427872,"journal":{"name":"Volume 6A: Ocean Engineering","volume":"21 7 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125685646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Li Zhang, Jianting Chen, Chuanming Zhou, Wei-min Chen
{"title":"Improved ITTC Uncertainty Analysis Method of Ship Model Self-Propulsion Tests","authors":"Li Zhang, Jianting Chen, Chuanming Zhou, Wei-min Chen","doi":"10.1115/omae2020-19285","DOIUrl":"https://doi.org/10.1115/omae2020-19285","url":null,"abstract":"\u0000 In this paper, the uncertainty analysis method of ITTC (2017) for ship model self-propulsion tests was studied, and the defects of the ITTC method were analyzed, which didn’t provide the method to analyze the tests results at different temperatures. Combined with the ship model self-propulsion tests carried out by SSSRI, an improved uncertainty analysis method was proposed. First of all, the ship model self-propulsion test process was combed to determine the error sources of uncertainty, and then according to the test principle of self-propulsion tests, an conversion method of test data at different temperatures was put forward. Furthermore, this improved method can be an additional procedure of ITTC on the uncertainty analysis of self-propulsion tests. At the same time, the steps and methods of uncertainty analysis of ship model self-propulsion tests can be used as a reference for other towing tank tests. At last, an example of the uncertainty analysis of self-propulsion results in SSSRI was presented. The results show that at the nominal temperature of 15°C, at 95% confidence level, the expanded uncertainty of rotational speed n is less than 0.4%, and the expanded uncertainty of thrust T and torque Q is less than 1.0%. The expanded uncertainty of thrust deduction factor t is less than 5.5%, wake fraction w 1.1%, which shows that the test in this paper has achieved high accuracy.","PeriodicalId":427872,"journal":{"name":"Volume 6A: Ocean Engineering","volume":"82 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130539266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Hydroelastic Analysis of the Bending-Torsional Coupling Vibrations of an Ultra-Large Container Ship","authors":"Hui Li, Lin Lu","doi":"10.1115/omae2020-18750","DOIUrl":"https://doi.org/10.1115/omae2020-18750","url":null,"abstract":"\u0000 Springing is a resonance phenomenon between the waves and the ship hull, and the high frequency vibration will threaten the safety of hull structures. With the development of economy, the size of ultra large container ships has been increasing, and the resulting springing and whipping response and their effects has been paid more and more attention. The structure of an ultra large container ship is essentially U-shaped with a low shear center, which results in strong coupling between horizontal bending and torsion. On the other hand, the actual response of hull structures will have an apparently dynamic amplification phenomenon under the effect of springing. In this paper, the wave-induced loads on the hull structure is estimated in the framework of the 3D linear hydroelastic theory, which coupling horizontal and torsional vibration. The vibration characteristics are investigated by using finite element method (FEM), which can get a better calculation accuracy than the simplified calculation method such as the Transfer Matrix Method. And the mode shape of displacement and section loads of the whole ship can be obtained and processed, which is needed for the analysis of hydroelasticity. Finally, in order to consider the effect of the dynamic amplification effect, the dynamic response analysis approach is used for the stress calculation. A 21000TEU is calculated by this method, and the difference between wave-induced and springing-induced section load in frequency domain is shown. Then the results of the frequency response analysis is compared with the quasi-static methods. And the effect of the springing and the dynamic magnification is analyzed.","PeriodicalId":427872,"journal":{"name":"Volume 6A: Ocean Engineering","volume":"23 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127832570","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Research on Position Keeping and Path Following Strategy for the Under-Actuated Waved Glider","authors":"Peng Wang, Xinliang Tian, Xiantao Zhang, Daoyong Wang, Xiaoxian Guo","doi":"10.1115/omae2020-18550","DOIUrl":"https://doi.org/10.1115/omae2020-18550","url":null,"abstract":"\u0000 Wave glider is a novel autonomous surface vehicle that uses energy from surface waves for propulsion. However, because it is inherently under-actuated, multi-variable and strong coupled, it is challenging to control the wave glider accurately under the environmental disturbances. In this study, a novel robust position keeping guidance strategy and an advanced path following approach for the under-actuated wave glider based on restricted circle are firstly developed. Furthermore, an 8-DOFs (Degree-of-Freedom) mathematical model for the under-actuated wave glider is adopted, and the position keeping and path following tasks of the wave glider are conducted in simulation. The results demonstrate that the under-actuated wave glider is able to accomplish the position keeping and path following tasks with the proposed strategies.","PeriodicalId":427872,"journal":{"name":"Volume 6A: Ocean Engineering","volume":"5 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126787298","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
B. Tong, Rui Chang, Zhuang Kang, Haibo Sui, Shaojie Li
{"title":"A Numerical Study of TAD and TLP Platforms Operating Side by Side","authors":"B. Tong, Rui Chang, Zhuang Kang, Haibo Sui, Shaojie Li","doi":"10.1115/omae2020-18726","DOIUrl":"https://doi.org/10.1115/omae2020-18726","url":null,"abstract":"\u0000 A Tender Assisted Drilling (TAD) is typically a support vessel that serves support of a drilling rig, by offering comfortable accommodation for crew and providing additional space where the Drilling Equipment Set is stored and transported. The operation with TAD provides an economical and flexible way for offshore drilling, especially with TLP. Dynamic response of tender-assisted drilling system is crucial due to the safety concern. However, some urgent issue has not been thoroughly studied in tender assisted drilling operation like the hydrodynamic interaction and the impact of nonlinearity cable used. In this paper, a tender assisted drilling system which was taken as the research object was investigated under the metocean conditions of West Africa. The numerical model was established in frequency domain using 3D multi-body diffraction/radiation wave theory and the hydrodynamic interaction is studied in this part. Then two kinds mull-body system with different hawsers arrangements are analyzed by the time domain simulation was performed considering hydrodynamic interaction and the impact of nonlinearity of mooring lines and hawsers. The Time history results of floating body motion and the force on mooring line is compared between two schemes. The results obtained is also investigated by spectral analysis to clearly understand the coupled behavior of such system under these two arrangement.","PeriodicalId":427872,"journal":{"name":"Volume 6A: Ocean Engineering","volume":"182 1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116706295","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An Optimized Thrust Allocation Algorithm for Dynamic Positioning System Based on RBF Neural Network","authors":"Tang Ziying, Lei Wang, Fan Yi, Huacheng He","doi":"10.1115/omae2020-18267","DOIUrl":"https://doi.org/10.1115/omae2020-18267","url":null,"abstract":"\u0000 The thrust allocation of Dynamic Positioning System (DPS) equipped with multiple thrusters is usually formulated as an optimization problem. Hydrodynamic interaction effects such as thruster-thruster interaction results in thrust loss. This interaction is generally avoided by defining forbidden zones for some azimuth angles. However, it leads to a higher power consumption and stuck thrust angles. For the purpose of improving the traditional Forbidden Zone (FZ) method, this paper proposes an optimized thrust allocation algorithm based on Radial Basis Function (RBF) neural network and Sequential Quadratic Programming (SQP) algorithm, named RBF-SQP. The thrust coefficient is introduced to express the thrust loss which is then incorporated into the mathematical model to remove forbidden zones. Specifically, the RBF neural network is constructed to approximate the thrust efficiency function, and the SQP algorithm is selected to solve the nonlinear optimization problem. The training dataset of RBF neural network is obtained from the model test of thrust-thrust interaction. Numerical simulations for the dynamic positioning of a semi-submersible platform are conducted under typical operating conditions. The simulation results demonstrate that the demanded forces can be correctly distributed among available thrusters. Compared with the traditional methods, the proposed thrust allocation algorithm can achieve a lower power consumption. Moreover, the advantages of considering hydrodynamic interaction effects and utilizing a neural network for function fitting are also highlighted, indicating a practical application prospect of the optimized algorithm.","PeriodicalId":427872,"journal":{"name":"Volume 6A: Ocean Engineering","volume":"32 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116587591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Study on the Architecture of a Zero Emission Hydrogen Fuel Cell Vessel Power Generating Unit","authors":"Lorenzo Balestra, I. Schjølberg","doi":"10.1115/omae2020-18093","DOIUrl":"https://doi.org/10.1115/omae2020-18093","url":null,"abstract":"\u0000 This study focuses on providing design guidelines for a vessel’s power-plant in the multi-megawatt range, equipped with a hybrid fuel cell and battery system. Background information is provided on the challenges to realizing such a system, spanning from a literature review on studies looking into energy management, to the technical limitations of state-of-the-art fuel cells and batteries. The central part of the work consists of the description of the model used to calculate the size of the hybrid power generating unit, including a case study on a single, real-world scenario. The Plant Analysis Balance with Operational Profile (PABOP) model, developed by the author and presented in the paper, is used to calculate the resources needed to retrofit a vessel operating on fossil fuels with a hybrid zero-emission power-plant. The model aim is to achieve a 1:1 replacement for diesel-electric configurations, both in terms of range and power, using fuel cell and battery power. In the case study, the model is applied to analyze the operational data of a double-ended ferry operating with diesel-electric propulsion. Emphasis is put on the I/O needed and produced by the model, and how this tool can be used by shipyard engineers to estimate the footprint required, the necessary storage capacity, lifetime of components and other parameters. The presented solutions could help manufacturers estimate the economical viability of hydrogen vessels, filling a gap in current maritime fleets where zero-emission systems are gaining increasing importance.","PeriodicalId":427872,"journal":{"name":"Volume 6A: Ocean Engineering","volume":"66 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125897277","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}