Theory of Probability and Mathematical Statistics最新文献

筛选
英文 中文
Random Lipschitz–Killing curvatures: Reduction Principles, Integration by Parts and Wiener chaos 随机Lipschitz-Killing曲率:约简原理,分部积分和Wiener混沌
IF 0.9
Theory of Probability and Mathematical Statistics Pub Date : 2021-08-03 DOI: 10.1090/tpms/1170
Anna Vidotto
{"title":"Random Lipschitz–Killing curvatures: Reduction Principles, Integration by Parts and Wiener chaos","authors":"Anna Vidotto","doi":"10.1090/tpms/1170","DOIUrl":"https://doi.org/10.1090/tpms/1170","url":null,"abstract":"In this survey we collect some recent results regarding the Lipschitz–Killing curvatures (LKCs) of the excursion sets of random eigenfunctions on the two-dimensional standard flat torus (arithmetic random waves) and on the two-dimensional unit sphere (random spherical harmonics). In particular, the aim of the present survey is to highlight the key role of integration by parts formulae in order to have an extremely neat expression for the random LKCs. Indeed, the main tool to study local geometric functionals of random waves on manifold is to exploit their Wiener chaos decomposition and show that (often), in the so-called high-energy limit, a single chaotic component dominates their behavior. Moreover, reduction principles show that the dominant Wiener chaotic component of LKCs of random waves’ excursion sets at threshold level \u0000\u0000 \u0000 \u0000 u\u0000 ≠\u0000 0\u0000 \u0000 une 0\u0000 \u0000\u0000 is proportional to the integral of \u0000\u0000 \u0000 \u0000 \u0000 H\u0000 2\u0000 \u0000 (\u0000 f\u0000 )\u0000 \u0000 H_2(f)\u0000 \u0000\u0000, \u0000\u0000 \u0000 f\u0000 f\u0000 \u0000\u0000 being the random field of interest and \u0000\u0000 \u0000 \u0000 H\u0000 2\u0000 \u0000 H_2\u0000 \u0000\u0000 the second Hermite polynomial. This will be shown via integration by parts formulae.","PeriodicalId":42776,"journal":{"name":"Theory of Probability and Mathematical Statistics","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2021-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41660632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
On the correlation between critical points and critical values for random spherical harmonics 随机球谐波的临界点与临界值的相关性
IF 0.9
Theory of Probability and Mathematical Statistics Pub Date : 2021-07-31 DOI: 10.1090/tpms/1164
Valentina Cammarota, Anna Todino
{"title":"On the correlation between critical points and critical values for random spherical harmonics","authors":"Valentina Cammarota, Anna Todino","doi":"10.1090/tpms/1164","DOIUrl":"https://doi.org/10.1090/tpms/1164","url":null,"abstract":"We study the correlation between the total number of critical points of random spherical harmonics and the number of critical points with value in any interval \u0000\u0000 \u0000 \u0000 I\u0000 ⊂\u0000 \u0000 R\u0000 \u0000 \u0000 I subset mathbb {R}\u0000 \u0000\u0000. We show that the correlation is asymptotically zero, while the partial correlation, after controlling the random \u0000\u0000 \u0000 \u0000 L\u0000 2\u0000 \u0000 L^2\u0000 \u0000\u0000-norm on the sphere of the eigenfunctions, is asymptotically one. Our findings complement the results obtained by Wigman (2012) and Marinucci and Rossi (2021) on the correlation between nodal and boundary length of random spherical harmonics.","PeriodicalId":42776,"journal":{"name":"Theory of Probability and Mathematical Statistics","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2021-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46762967","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Parametric estimation for functional autoregressive processes on the sphere 球面上函数自回归过程的参数估计
IF 0.9
Theory of Probability and Mathematical Statistics Pub Date : 2021-07-19 DOI: 10.1090/tpms/1165
Alessia Caponera, C. Durastanti
{"title":"Parametric estimation for functional autoregressive processes on the sphere","authors":"Alessia Caponera, C. Durastanti","doi":"10.1090/tpms/1165","DOIUrl":"https://doi.org/10.1090/tpms/1165","url":null,"abstract":"The aim of this paper is to define a nonlinear least squares estimator for the spectral parameters of a spherical autoregressive process of order 1 in a parametric setting. Furthermore, we investigate on its asymptotic properties, such as weak consistency and asymptotic normality.","PeriodicalId":42776,"journal":{"name":"Theory of Probability and Mathematical Statistics","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2021-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49112399","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fractional stochastic partial differential equation for random tangent fields on the sphere 球面上随机切线场的分数阶随机偏微分方程
IF 0.9
Theory of Probability and Mathematical Statistics Pub Date : 2021-07-08 DOI: 10.1090/tpms/1142
V. Anh, A. Olenko, Yu Guang Wang
{"title":"Fractional stochastic partial differential equation for random tangent fields on the sphere","authors":"V. Anh, A. Olenko, Yu Guang Wang","doi":"10.1090/tpms/1142","DOIUrl":"https://doi.org/10.1090/tpms/1142","url":null,"abstract":"This paper develops a fractional stochastic partial differential equation (SPDE) to model the evolution of a random tangent vector field on the unit sphere. The SPDE is governed by a fractional diffusion operator to model the Lévy-type behaviour of the spatial solution, a fractional derivative in time to depict the intermittency of its temporal solution, and is driven by vector-valued fractional Brownian motion on the unit sphere to characterize its temporal long-range dependence. The solution to the SPDE is presented in the form of the Karhunen-Loève expansion in terms of vector spherical harmonics. Its covariance matrix function is established as a tensor field on the unit sphere that is an expansion of Legendre tensor kernels. The variance of the increments and approximations to the solutions are studied and convergence rates of the approximation errors are given. It is demonstrated how these convergence rates depend on the decay of the power spectrum and variances of the fractional Brownian motion.","PeriodicalId":42776,"journal":{"name":"Theory of Probability and Mathematical Statistics","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2021-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47164807","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
A test on mean-variance efficiency of the tangency portfolio in high-dimensional setting 高维环境下切线投资组合的均方差效率检验
IF 0.9
Theory of Probability and Mathematical Statistics Pub Date : 2021-06-16 DOI: 10.1090/TPMS/1136
Stanislas Muhinyuza
{"title":"A test on mean-variance efficiency of the tangency portfolio in high-dimensional setting","authors":"Stanislas Muhinyuza","doi":"10.1090/TPMS/1136","DOIUrl":"https://doi.org/10.1090/TPMS/1136","url":null,"abstract":"In this paper we derive the asymptotic distribution of the test of the efficiency of the tangency portfolio in high-dimensional settings, namely when both the portfolio dimension and the sample siz ...","PeriodicalId":42776,"journal":{"name":"Theory of Probability and Mathematical Statistics","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2021-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45020288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
A note on last-success-problem 关于last-success-problem的注释
IF 0.9
Theory of Probability and Mathematical Statistics Pub Date : 2021-06-16 DOI: 10.1090/TPMS/1139
J. M. G. Ribas
{"title":"A note on last-success-problem","authors":"J. M. G. Ribas","doi":"10.1090/TPMS/1139","DOIUrl":"https://doi.org/10.1090/TPMS/1139","url":null,"abstract":"","PeriodicalId":42776,"journal":{"name":"Theory of Probability and Mathematical Statistics","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2021-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45259958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Editorial 编辑
IF 0.9
Theory of Probability and Mathematical Statistics Pub Date : 2021-06-16 DOI: 10.1090/tpms/1140
Y. Mishura, L. Sakhno, A. Veretennikov
{"title":"Editorial","authors":"Y. Mishura, L. Sakhno, A. Veretennikov","doi":"10.1090/tpms/1140","DOIUrl":"https://doi.org/10.1090/tpms/1140","url":null,"abstract":"","PeriodicalId":42776,"journal":{"name":"Theory of Probability and Mathematical Statistics","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2021-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45884285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Closed-form estimator for the matrix-variate Gamma distribution 矩阵变量伽玛分布的封闭估计量
IF 0.9
Theory of Probability and Mathematical Statistics Pub Date : 2021-06-16 DOI: 10.1090/TPMS/1138
Gustav Alfelt
{"title":"Closed-form estimator for the matrix-variate Gamma distribution","authors":"Gustav Alfelt","doi":"10.1090/TPMS/1138","DOIUrl":"https://doi.org/10.1090/TPMS/1138","url":null,"abstract":"In this paper we present a novel closed-form estimator for the parameters of the matrixvariate gamma distribution. The estimator relies on the moments of a transformation of the observed matrices, and is compared to the maximum likelihood estimator (MLE) through a simulation study. The study reveals that the suggested estimator outperforms the MLE, in terms of estimation error, when the underlying scale matrix parameter is ill-conditioned or when the shape parameter is close to its lower bound. In addition, since the suggested estimator is closed-form, it does not require numerical optimization as the MLE does, thus needing shorter computation time and is furthermore not subject to start value sensitivity or convergence issues. Finally, using the proposed estimator as start value in the optimization procedure of the MLE is shown to substantially reduce computation time, in comparison to using arbitrary start values.","PeriodicalId":42776,"journal":{"name":"Theory of Probability and Mathematical Statistics","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2021-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45223114","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
On modeling the correlation as an additional parameter in random effects model 随机效应模型中作为附加参数的相关性建模
IF 0.9
Theory of Probability and Mathematical Statistics Pub Date : 2021-06-16 DOI: 10.1090/TPMS/1137
Rebecca Nalule Muhumuza, Olha Bodnar
{"title":"On modeling the correlation as an additional parameter in random effects model","authors":"Rebecca Nalule Muhumuza, Olha Bodnar","doi":"10.1090/TPMS/1137","DOIUrl":"https://doi.org/10.1090/TPMS/1137","url":null,"abstract":"","PeriodicalId":42776,"journal":{"name":"Theory of Probability and Mathematical Statistics","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2021-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43289468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Asymptotic results for certain first-passage times and areas of renewal processes 更新过程的某些首次通过时间和区域的渐近结果
IF 0.9
Theory of Probability and Mathematical Statistics Pub Date : 2021-05-17 DOI: 10.1090/tpms/1189
C. Macci, B. Pacchiarotti
{"title":"Asymptotic results for certain first-passage times and areas of renewal processes","authors":"C. Macci, B. Pacchiarotti","doi":"10.1090/tpms/1189","DOIUrl":"https://doi.org/10.1090/tpms/1189","url":null,"abstract":"<p>We consider the process <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"StartSet x minus upper N left-parenthesis t right-parenthesis colon t greater-than-or-equal-to 0 EndSet\"> <mml:semantics> <mml:mrow> <mml:mo fence=\"false\" stretchy=\"false\">{</mml:mo> <mml:mi>x</mml:mi> <mml:mo>−<!-- − --></mml:mo> <mml:mi>N</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>:</mml:mo> <mml:mi>t</mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mn>0</mml:mn> <mml:mo fence=\"false\" stretchy=\"false\">}</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">{x-N(t):tgeq 0}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, where <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"x element-of double-struck upper R Subscript plus\"> <mml:semantics> <mml:mrow> <mml:mi>x</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:msub> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> <mml:mo>+</mml:mo> </mml:msub> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">xin mathbb {R}_+</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"StartSet upper N left-parenthesis t right-parenthesis colon t greater-than-or-equal-to 0 EndSet\"> <mml:semantics> <mml:mrow> <mml:mo fence=\"false\" stretchy=\"false\">{</mml:mo> <mml:mi>N</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>:</mml:mo> <mml:mi>t</mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mn>0</mml:mn> <mml:mo fence=\"false\" stretchy=\"false\">}</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">{N(t):tgeq 0}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a renewal process with light-tailed distributed holding times. We are interested in the joint distribution of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis tau left-parenthesis x right-parenthesis comma upper A left-parenthesis x right-parenthesis right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>τ<!-- τ --></mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>,</mml:mo> <mml:mi>A</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo stretchy=\"f","PeriodicalId":42776,"journal":{"name":"Theory of Probability and Mathematical Statistics","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2021-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49188078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信