Theory of Probability and Mathematical Statistics最新文献

筛选
英文 中文
Closed-form estimator for the matrix-variate Gamma distribution 矩阵变量伽玛分布的封闭估计量
IF 0.9
Theory of Probability and Mathematical Statistics Pub Date : 2021-06-16 DOI: 10.1090/TPMS/1138
Gustav Alfelt
{"title":"Closed-form estimator for the matrix-variate Gamma distribution","authors":"Gustav Alfelt","doi":"10.1090/TPMS/1138","DOIUrl":"https://doi.org/10.1090/TPMS/1138","url":null,"abstract":"In this paper we present a novel closed-form estimator for the parameters of the matrixvariate gamma distribution. The estimator relies on the moments of a transformation of the observed matrices, and is compared to the maximum likelihood estimator (MLE) through a simulation study. The study reveals that the suggested estimator outperforms the MLE, in terms of estimation error, when the underlying scale matrix parameter is ill-conditioned or when the shape parameter is close to its lower bound. In addition, since the suggested estimator is closed-form, it does not require numerical optimization as the MLE does, thus needing shorter computation time and is furthermore not subject to start value sensitivity or convergence issues. Finally, using the proposed estimator as start value in the optimization procedure of the MLE is shown to substantially reduce computation time, in comparison to using arbitrary start values.","PeriodicalId":42776,"journal":{"name":"Theory of Probability and Mathematical Statistics","volume":"103 1","pages":"137-154"},"PeriodicalIF":0.9,"publicationDate":"2021-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45223114","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
On modeling the correlation as an additional parameter in random effects model 随机效应模型中作为附加参数的相关性建模
IF 0.9
Theory of Probability and Mathematical Statistics Pub Date : 2021-06-16 DOI: 10.1090/TPMS/1137
Rebecca Nalule Muhumuza, Olha Bodnar
{"title":"On modeling the correlation as an additional parameter in random effects model","authors":"Rebecca Nalule Muhumuza, Olha Bodnar","doi":"10.1090/TPMS/1137","DOIUrl":"https://doi.org/10.1090/TPMS/1137","url":null,"abstract":"","PeriodicalId":42776,"journal":{"name":"Theory of Probability and Mathematical Statistics","volume":"103 1","pages":"121-136"},"PeriodicalIF":0.9,"publicationDate":"2021-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43289468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Asymptotic results for certain first-passage times and areas of renewal processes 更新过程的某些首次通过时间和区域的渐近结果
IF 0.9
Theory of Probability and Mathematical Statistics Pub Date : 2021-05-17 DOI: 10.1090/tpms/1189
C. Macci, B. Pacchiarotti
{"title":"Asymptotic results for certain first-passage times and areas of renewal processes","authors":"C. Macci, B. Pacchiarotti","doi":"10.1090/tpms/1189","DOIUrl":"https://doi.org/10.1090/tpms/1189","url":null,"abstract":"<p>We consider the process <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"StartSet x minus upper N left-parenthesis t right-parenthesis colon t greater-than-or-equal-to 0 EndSet\"> <mml:semantics> <mml:mrow> <mml:mo fence=\"false\" stretchy=\"false\">{</mml:mo> <mml:mi>x</mml:mi> <mml:mo>−<!-- − --></mml:mo> <mml:mi>N</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>:</mml:mo> <mml:mi>t</mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mn>0</mml:mn> <mml:mo fence=\"false\" stretchy=\"false\">}</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">{x-N(t):tgeq 0}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, where <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"x element-of double-struck upper R Subscript plus\"> <mml:semantics> <mml:mrow> <mml:mi>x</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:msub> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> <mml:mo>+</mml:mo> </mml:msub> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">xin mathbb {R}_+</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"StartSet upper N left-parenthesis t right-parenthesis colon t greater-than-or-equal-to 0 EndSet\"> <mml:semantics> <mml:mrow> <mml:mo fence=\"false\" stretchy=\"false\">{</mml:mo> <mml:mi>N</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>:</mml:mo> <mml:mi>t</mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mn>0</mml:mn> <mml:mo fence=\"false\" stretchy=\"false\">}</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">{N(t):tgeq 0}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a renewal process with light-tailed distributed holding times. We are interested in the joint distribution of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis tau left-parenthesis x right-parenthesis comma upper A left-parenthesis x right-parenthesis right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>τ<!-- τ --></mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>,</mml:mo> <mml:mi>A</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo stretchy=\"f","PeriodicalId":42776,"journal":{"name":"Theory of Probability and Mathematical Statistics","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2021-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49188078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Non-local logistic equations from the probability viewpoint 概率视角下的非局部逻辑方程
IF 0.9
Theory of Probability and Mathematical Statistics Pub Date : 2021-05-03 DOI: 10.1090/tpms/1146
M. D’Ovidio
{"title":"Non-local logistic equations from the probability viewpoint","authors":"M. D’Ovidio","doi":"10.1090/tpms/1146","DOIUrl":"https://doi.org/10.1090/tpms/1146","url":null,"abstract":"We investigate the solution to the logistic equation involving non-local operators in time. In the linear case such operators lead to the well-known theory of time changes. We provide the probabilistic representation for the non-linear logistic equation with non-local operators in time. The so-called fractional logistic equation has been investigated by many researchers, the problem to find the explicit representation of the solution on the whole real line is still open. In our recent work the solution on compact sets has been written in terms of Euler's numbers.","PeriodicalId":42776,"journal":{"name":"Theory of Probability and Mathematical Statistics","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2021-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46224658","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Mild solutions to semilinear stochastic partial differential equations with locally monotone coefficients 具有局部单调系数的半线性随机偏微分方程的温和解
IF 0.9
Theory of Probability and Mathematical Statistics Pub Date : 2021-04-21 DOI: 10.1090/tpms/1149
Stefan Tappe
{"title":"Mild solutions to semilinear stochastic partial differential equations with locally monotone coefficients","authors":"Stefan Tappe","doi":"10.1090/tpms/1149","DOIUrl":"https://doi.org/10.1090/tpms/1149","url":null,"abstract":"In this addendum we provide an existence and uniqueness result for mild solutions to semilinear stochastic partial differential equations driven by Wiener processes and Poisson random measures in the framework of the semigroup approach with locally monotone coefficients, where the semigroup is allowed to be pseudo-contractive. This improves an earlier paper of the author, where the equation was only driven by Wiener processes, and where the semigroup was only allowed to be a semigroup of contractions.","PeriodicalId":42776,"journal":{"name":"Theory of Probability and Mathematical Statistics","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2021-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49649252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Limit theorems for prices of options written on semi-Markov processes 半马尔可夫过程上的期权价格的极限定理
IF 0.9
Theory of Probability and Mathematical Statistics Pub Date : 2021-04-10 DOI: 10.1090/tpms/1153
E. Scalas, Bruno Toaldo
{"title":"Limit theorems for prices of options written on semi-Markov processes","authors":"E. Scalas, Bruno Toaldo","doi":"10.1090/tpms/1153","DOIUrl":"https://doi.org/10.1090/tpms/1153","url":null,"abstract":"We consider plain vanilla European options written on an underlying asset that follows a continuous time semi-Markov multiplicative process. We derive a formula and a renewal type equation for the martingale option price. In the case in which intertrade times follow the Mittag-Leffler distribution, under appropriate scaling, we prove that these option prices converge to the price of an option written on geometric Brownian motion time-changed with the inverse stable subordinator. For geometric Brownian motion time changed with an inverse subordinator, in the more general case when the subordinator’s Laplace exponent is a special Bernstein function, we derive a time-fractional generalization of the equation of Black and Scholes.","PeriodicalId":42776,"journal":{"name":"Theory of Probability and Mathematical Statistics","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2021-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46774692","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Approximation of the solution to the parabolic equation driven by stochastic measure 由随机测量驱动的抛物方程解的近似
IF 0.9
Theory of Probability and Mathematical Statistics Pub Date : 2021-03-29 DOI: 10.1090/TPMS/1131
B. Manikin, V. Radchenko
{"title":"Approximation of the solution to the parabolic equation driven by stochastic measure","authors":"B. Manikin, V. Radchenko","doi":"10.1090/TPMS/1131","DOIUrl":"https://doi.org/10.1090/TPMS/1131","url":null,"abstract":"","PeriodicalId":42776,"journal":{"name":"Theory of Probability and Mathematical Statistics","volume":"1 1","pages":"1"},"PeriodicalIF":0.9,"publicationDate":"2021-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41968258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
The equation for vibrations of a fixed string driven by a general stochastic measure 由一般随机测量驱动的固定弦的振动方程
IF 0.9
Theory of Probability and Mathematical Statistics Pub Date : 2021-01-05 DOI: 10.1090/tpms/1108
I. Bodnarchuk, V. Radchenko
{"title":"The equation for vibrations of a fixed string driven by a general stochastic measure","authors":"I. Bodnarchuk, V. Radchenko","doi":"10.1090/tpms/1108","DOIUrl":"https://doi.org/10.1090/tpms/1108","url":null,"abstract":"","PeriodicalId":42776,"journal":{"name":"Theory of Probability and Mathematical Statistics","volume":"101 1","pages":"1-11"},"PeriodicalIF":0.9,"publicationDate":"2021-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44192288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
The Wold decomposition of Hilbertian periodically correlated processes Hilbertian周期性相关过程的Wold分解
IF 0.9
Theory of Probability and Mathematical Statistics Pub Date : 2021-01-05 DOI: 10.1090/tpms/1116
A. Zamani, Z. Sajjadnia, M. Hashemi
{"title":"The Wold decomposition of Hilbertian periodically correlated processes","authors":"A. Zamani, Z. Sajjadnia, M. Hashemi","doi":"10.1090/tpms/1116","DOIUrl":"https://doi.org/10.1090/tpms/1116","url":null,"abstract":"","PeriodicalId":42776,"journal":{"name":"Theory of Probability and Mathematical Statistics","volume":"101 1","pages":"119-127"},"PeriodicalIF":0.9,"publicationDate":"2021-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47259133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Differential and integral equations for jump random motions 跳跃随机运动的微分和积分方程
IF 0.9
Theory of Probability and Mathematical Statistics Pub Date : 2021-01-05 DOI: 10.1090/tpms/1123
A. Pogorui, R. Rodríguez-Dagnino
{"title":"Differential and integral equations for jump random motions","authors":"A. Pogorui, R. Rodríguez-Dagnino","doi":"10.1090/tpms/1123","DOIUrl":"https://doi.org/10.1090/tpms/1123","url":null,"abstract":"","PeriodicalId":42776,"journal":{"name":"Theory of Probability and Mathematical Statistics","volume":"101 1","pages":"233-242"},"PeriodicalIF":0.9,"publicationDate":"2021-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42251311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信