矩阵变量伽玛分布的封闭估计量

IF 0.4 Q4 STATISTICS & PROBABILITY
Gustav Alfelt
{"title":"矩阵变量伽玛分布的封闭估计量","authors":"Gustav Alfelt","doi":"10.1090/TPMS/1138","DOIUrl":null,"url":null,"abstract":"In this paper we present a novel closed-form estimator for the parameters of the matrixvariate gamma distribution. The estimator relies on the moments of a transformation of the observed matrices, and is compared to the maximum likelihood estimator (MLE) through a simulation study. The study reveals that the suggested estimator outperforms the MLE, in terms of estimation error, when the underlying scale matrix parameter is ill-conditioned or when the shape parameter is close to its lower bound. In addition, since the suggested estimator is closed-form, it does not require numerical optimization as the MLE does, thus needing shorter computation time and is furthermore not subject to start value sensitivity or convergence issues. Finally, using the proposed estimator as start value in the optimization procedure of the MLE is shown to substantially reduce computation time, in comparison to using arbitrary start values.","PeriodicalId":42776,"journal":{"name":"Theory of Probability and Mathematical Statistics","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2021-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Closed-form estimator for the matrix-variate Gamma distribution\",\"authors\":\"Gustav Alfelt\",\"doi\":\"10.1090/TPMS/1138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present a novel closed-form estimator for the parameters of the matrixvariate gamma distribution. The estimator relies on the moments of a transformation of the observed matrices, and is compared to the maximum likelihood estimator (MLE) through a simulation study. The study reveals that the suggested estimator outperforms the MLE, in terms of estimation error, when the underlying scale matrix parameter is ill-conditioned or when the shape parameter is close to its lower bound. In addition, since the suggested estimator is closed-form, it does not require numerical optimization as the MLE does, thus needing shorter computation time and is furthermore not subject to start value sensitivity or convergence issues. Finally, using the proposed estimator as start value in the optimization procedure of the MLE is shown to substantially reduce computation time, in comparison to using arbitrary start values.\",\"PeriodicalId\":42776,\"journal\":{\"name\":\"Theory of Probability and Mathematical Statistics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2021-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theory of Probability and Mathematical Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/TPMS/1138\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory of Probability and Mathematical Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/TPMS/1138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

摘要

本文给出了矩阵变量分布参数的一种新的闭型估计量。该估计量依赖于观测矩阵变换的矩量,并通过仿真研究与极大似然估计量(MLE)进行了比较。研究表明,当底层尺度矩阵参数为病态或形状参数接近其下界时,所提出的估计器在估计误差方面优于MLE。此外,由于建议的估计器是闭型的,因此不需要像MLE那样进行数值优化,因此需要更短的计算时间,并且不受起始值敏感性或收敛性问题的影响。最后,与使用任意起始值相比,在MLE优化过程中使用所提出的估计量作为起始值大大减少了计算时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Closed-form estimator for the matrix-variate Gamma distribution
In this paper we present a novel closed-form estimator for the parameters of the matrixvariate gamma distribution. The estimator relies on the moments of a transformation of the observed matrices, and is compared to the maximum likelihood estimator (MLE) through a simulation study. The study reveals that the suggested estimator outperforms the MLE, in terms of estimation error, when the underlying scale matrix parameter is ill-conditioned or when the shape parameter is close to its lower bound. In addition, since the suggested estimator is closed-form, it does not require numerical optimization as the MLE does, thus needing shorter computation time and is furthermore not subject to start value sensitivity or convergence issues. Finally, using the proposed estimator as start value in the optimization procedure of the MLE is shown to substantially reduce computation time, in comparison to using arbitrary start values.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
22
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信