具有局部单调系数的半线性随机偏微分方程的温和解

IF 0.4 Q4 STATISTICS & PROBABILITY
Stefan Tappe
{"title":"具有局部单调系数的半线性随机偏微分方程的温和解","authors":"Stefan Tappe","doi":"10.1090/tpms/1149","DOIUrl":null,"url":null,"abstract":"In this addendum we provide an existence and uniqueness result for mild solutions to semilinear stochastic partial differential equations driven by Wiener processes and Poisson random measures in the framework of the semigroup approach with locally monotone coefficients, where the semigroup is allowed to be pseudo-contractive. This improves an earlier paper of the author, where the equation was only driven by Wiener processes, and where the semigroup was only allowed to be a semigroup of contractions.","PeriodicalId":42776,"journal":{"name":"Theory of Probability and Mathematical Statistics","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2021-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Mild solutions to semilinear stochastic partial differential equations with locally monotone coefficients\",\"authors\":\"Stefan Tappe\",\"doi\":\"10.1090/tpms/1149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this addendum we provide an existence and uniqueness result for mild solutions to semilinear stochastic partial differential equations driven by Wiener processes and Poisson random measures in the framework of the semigroup approach with locally monotone coefficients, where the semigroup is allowed to be pseudo-contractive. This improves an earlier paper of the author, where the equation was only driven by Wiener processes, and where the semigroup was only allowed to be a semigroup of contractions.\",\"PeriodicalId\":42776,\"journal\":{\"name\":\"Theory of Probability and Mathematical Statistics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2021-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theory of Probability and Mathematical Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/tpms/1149\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory of Probability and Mathematical Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/tpms/1149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

摘要

在局部单调系数半群方法的框架下,我们给出了由Wiener过程和Poisson随机测度驱动的半线性随机偏微分方程的温和解的存在唯一性结果,其中半群是伪压缩的。这改进了作者早期的一篇论文,其中方程仅由维纳过程驱动,并且其中半群仅被允许是收缩的半群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mild solutions to semilinear stochastic partial differential equations with locally monotone coefficients
In this addendum we provide an existence and uniqueness result for mild solutions to semilinear stochastic partial differential equations driven by Wiener processes and Poisson random measures in the framework of the semigroup approach with locally monotone coefficients, where the semigroup is allowed to be pseudo-contractive. This improves an earlier paper of the author, where the equation was only driven by Wiener processes, and where the semigroup was only allowed to be a semigroup of contractions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
22
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信