{"title":"Optimum Performance of Bridge Isolation System under Parameter Uncertainty","authors":"B. Roy","doi":"10.4018/IJGEE.2017070105","DOIUrl":"https://doi.org/10.4018/IJGEE.2017070105","url":null,"abstract":"","PeriodicalId":42473,"journal":{"name":"International Journal of Geotechnical Earthquake Engineering","volume":"62 1","pages":"82-101"},"PeriodicalIF":0.8,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77806405","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Probabilistic Seismic Hazard Analysis and Synthetic Ground Motion Generation for Seismic Risk Assessment of Structures in the Northeast India","authors":"Swarup Kumar Ghosh, S. Chakraborty","doi":"10.4018/IJGEE.2017070103","DOIUrl":"https://doi.org/10.4018/IJGEE.2017070103","url":null,"abstract":"","PeriodicalId":42473,"journal":{"name":"International Journal of Geotechnical Earthquake Engineering","volume":"185 1","pages":"39-59"},"PeriodicalIF":0.8,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76420388","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
G. Marano, Matteo Pelliciari, T. Cuoghi, B. Briseghella, D. Lavorato, A. Tarantino
{"title":"Degrading bouc-wen model parameters identification under cyclic load","authors":"G. Marano, Matteo Pelliciari, T. Cuoghi, B. Briseghella, D. Lavorato, A. Tarantino","doi":"10.4018/IJGEE.2017070104","DOIUrl":"https://doi.org/10.4018/IJGEE.2017070104","url":null,"abstract":"The purpose of this article is to describe the Bouc–Wen model of hysteresis for structural engineering which is used to describe a wide range of nonlinear hysteretic systems, as a consequence of its capability to produce a variety of hysteretic patterns. This article focuses on the application of the Bouc–Wen model to predict the hysteretic behaviour of reinforced concrete bridge piers. The purpose is to identify the optimal values of the parameters so that the output of the model matches as well as possible the experimental data. Two repaired, retrofitted and reinforced concrete bridge pier specimens (in a 1:6 scale of a real bridge pier) are tested in a laboratory and used for experiments in this article. An identification of Bouc–Wen model's parameters is performed using the force–displacement experimental data obtained after cyclic loading tests on these two specimens. The original model involves many parameters and complex pinching and degrading functions. This makes the identification solution unmanageable and with numerical problems. Furthermore, from a computational point of view, the identification takes too much time. The novelty of this work is the proposal of a simplification of the model allowed by simpler pinching and degrading functions and the reduction of the number of parameters. The latter innovation is effective in reducing computational efforts and is performed after a deep study of the mechanical effects of each parameter on the pier response. This simplified model is implemented in a MATLAB code and the numerical results are well fit to the experimental results and are reliable in terms of manageability, stability, and computational time.","PeriodicalId":42473,"journal":{"name":"International Journal of Geotechnical Earthquake Engineering","volume":"10 1","pages":"60-81"},"PeriodicalIF":0.8,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90044727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Thermal Anomalies Around the Time of Nepal Earthquakes M 7.8 April 25, 2015 And M 7.3 May 12, 2015","authors":"P. Hazra, S. S. De, S. Paul, G. Guha, A. Ghosh","doi":"10.4018/IJGEE.2017010104","DOIUrl":"https://doi.org/10.4018/IJGEE.2017010104","url":null,"abstract":"TwoconsecutivelargeearthquakeshavingMvalues7.8and7.3occurredonApril25andMay12, 2015,respectivelyatNepal.Duringtheiroccurrences,abruptincreaseingreenhousegases(likeCO2, CH4,H2etc.)andenhancementofradonemanationsarefound.Theseattainhighmomentumthat introduceanomalyinthefluidexpulsionfromseismicallyactivefaultswhichproduceairionization beforetheselargeearthquakes.Theprocessmaybeverymuchrelatedtothelatentheatreleasedue tocondensationofionizedaerosols,producedbyenergeticalphaparticlesfromradonjustbeforethe earthquake.Thisprobablyintroduceschangesintheobservedmeteorologicalparametersintheregion. Suchvariationsmaybeduetosiesmotectonicallyinducedradonanomalybeforetheearthquake.","PeriodicalId":42473,"journal":{"name":"International Journal of Geotechnical Earthquake Engineering","volume":"59 1","pages":"58-73"},"PeriodicalIF":0.8,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76480112","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}