M. Rahmani, Abdelmalek Amine, R. M. Hamou
{"title":"基于聚类的非平衡地震数据学习方法","authors":"M. Rahmani, Abdelmalek Amine, R. M. Hamou","doi":"10.4018/IJGEE.2017070101","DOIUrl":null,"url":null,"abstract":"Thisarticledescribeshowsomestratumcontainastressconcentrationzones,andwhilethestress increases andexceedsahighvalueor socalledcriticalvalue, it destroys rocks.This causes the emissionofseismictremorsofdifferentenergies.Seismologyconsistsofthestudyoftheeffectsof seismicwaves,andpredictingtheseismichazardstorocksandlongwallcoals.Thisisalongsidethe mainproblemoccurredinthisfield,theunbalanceddatathatlackscausewhenstudyingtheseismic hazards.Learningfromunbalanceddataisconsideredasoneofthemostdifficultissuestosolve nowadays,thisarticlepresentsaninformedsamplingmethodthatisbasedonaclusteringapproach forthepredictionofseismichazardsinPolishcoalmines.Theideaisbasedonthedividingofnonhazardousexampleswhichrepresentsmorethan90%ofthereal-lifecasesintosubsetsofexamplesin ordertobalancetheclasses.Thisactionfacilitatesthelearningfromtherecordeddata.Forevaluation, theauthorshaveevaluatedthesystembasedonthepredictionofseismichazardswherepositive resultshavebeenreviewedcomparedtotheclassificationofexampleswithoutbalancingthecases. KEywoRDS Clustering, Data Mining, Machine Learning, Seismic Hazards Detection, Supervised Classification, Unbalanced Data","PeriodicalId":42473,"journal":{"name":"International Journal of Geotechnical Earthquake Engineering","volume":"39 1","pages":"1-22"},"PeriodicalIF":0.5000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Clustering Based Sampling for Learning from Unbalanced Seismic Data Set\",\"authors\":\"M. Rahmani, Abdelmalek Amine, R. M. Hamou\",\"doi\":\"10.4018/IJGEE.2017070101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Thisarticledescribeshowsomestratumcontainastressconcentrationzones,andwhilethestress increases andexceedsahighvalueor socalledcriticalvalue, it destroys rocks.This causes the emissionofseismictremorsofdifferentenergies.Seismologyconsistsofthestudyoftheeffectsof seismicwaves,andpredictingtheseismichazardstorocksandlongwallcoals.Thisisalongsidethe mainproblemoccurredinthisfield,theunbalanceddatathatlackscausewhenstudyingtheseismic hazards.Learningfromunbalanceddataisconsideredasoneofthemostdifficultissuestosolve nowadays,thisarticlepresentsaninformedsamplingmethodthatisbasedonaclusteringapproach forthepredictionofseismichazardsinPolishcoalmines.Theideaisbasedonthedividingofnonhazardousexampleswhichrepresentsmorethan90%ofthereal-lifecasesintosubsetsofexamplesin ordertobalancetheclasses.Thisactionfacilitatesthelearningfromtherecordeddata.Forevaluation, theauthorshaveevaluatedthesystembasedonthepredictionofseismichazardswherepositive resultshavebeenreviewedcomparedtotheclassificationofexampleswithoutbalancingthecases. KEywoRDS Clustering, Data Mining, Machine Learning, Seismic Hazards Detection, Supervised Classification, Unbalanced Data\",\"PeriodicalId\":42473,\"journal\":{\"name\":\"International Journal of Geotechnical Earthquake Engineering\",\"volume\":\"39 1\",\"pages\":\"1-22\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Geotechnical Earthquake Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/IJGEE.2017070101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Geotechnical Earthquake Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJGEE.2017070101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Clustering Based Sampling for Learning from Unbalanced Seismic Data Set
Thisarticledescribeshowsomestratumcontainastressconcentrationzones,andwhilethestress increases andexceedsahighvalueor socalledcriticalvalue, it destroys rocks.This causes the emissionofseismictremorsofdifferentenergies.Seismologyconsistsofthestudyoftheeffectsof seismicwaves,andpredictingtheseismichazardstorocksandlongwallcoals.Thisisalongsidethe mainproblemoccurredinthisfield,theunbalanceddatathatlackscausewhenstudyingtheseismic hazards.Learningfromunbalanceddataisconsideredasoneofthemostdifficultissuestosolve nowadays,thisarticlepresentsaninformedsamplingmethodthatisbasedonaclusteringapproach forthepredictionofseismichazardsinPolishcoalmines.Theideaisbasedonthedividingofnonhazardousexampleswhichrepresentsmorethan90%ofthereal-lifecasesintosubsetsofexamplesin ordertobalancetheclasses.Thisactionfacilitatesthelearningfromtherecordeddata.Forevaluation, theauthorshaveevaluatedthesystembasedonthepredictionofseismichazardswherepositive resultshavebeenreviewedcomparedtotheclassificationofexampleswithoutbalancingthecases. KEywoRDS Clustering, Data Mining, Machine Learning, Seismic Hazards Detection, Supervised Classification, Unbalanced Data