Clustering Based Sampling for Learning from Unbalanced Seismic Data Set

IF 0.5 Q4 ENGINEERING, GEOLOGICAL
M. Rahmani, Abdelmalek Amine, R. M. Hamou
{"title":"Clustering Based Sampling for Learning from Unbalanced Seismic Data Set","authors":"M. Rahmani, Abdelmalek Amine, R. M. Hamou","doi":"10.4018/IJGEE.2017070101","DOIUrl":null,"url":null,"abstract":"Thisarticledescribeshowsomestratumcontainastressconcentrationzones,andwhilethestress increases andexceedsahighvalueor socalledcriticalvalue, it destroys rocks.This causes the emissionofseismictremorsofdifferentenergies.Seismologyconsistsofthestudyoftheeffectsof seismicwaves,andpredictingtheseismichazardstorocksandlongwallcoals.Thisisalongsidethe mainproblemoccurredinthisfield,theunbalanceddatathatlackscausewhenstudyingtheseismic hazards.Learningfromunbalanceddataisconsideredasoneofthemostdifficultissuestosolve nowadays,thisarticlepresentsaninformedsamplingmethodthatisbasedonaclusteringapproach forthepredictionofseismichazardsinPolishcoalmines.Theideaisbasedonthedividingofnonhazardousexampleswhichrepresentsmorethan90%ofthereal-lifecasesintosubsetsofexamplesin ordertobalancetheclasses.Thisactionfacilitatesthelearningfromtherecordeddata.Forevaluation, theauthorshaveevaluatedthesystembasedonthepredictionofseismichazardswherepositive resultshavebeenreviewedcomparedtotheclassificationofexampleswithoutbalancingthecases. KEywoRDS Clustering, Data Mining, Machine Learning, Seismic Hazards Detection, Supervised Classification, Unbalanced Data","PeriodicalId":42473,"journal":{"name":"International Journal of Geotechnical Earthquake Engineering","volume":"39 1","pages":"1-22"},"PeriodicalIF":0.5000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Geotechnical Earthquake Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJGEE.2017070101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Thisarticledescribeshowsomestratumcontainastressconcentrationzones,andwhilethestress increases andexceedsahighvalueor socalledcriticalvalue, it destroys rocks.This causes the emissionofseismictremorsofdifferentenergies.Seismologyconsistsofthestudyoftheeffectsof seismicwaves,andpredictingtheseismichazardstorocksandlongwallcoals.Thisisalongsidethe mainproblemoccurredinthisfield,theunbalanceddatathatlackscausewhenstudyingtheseismic hazards.Learningfromunbalanceddataisconsideredasoneofthemostdifficultissuestosolve nowadays,thisarticlepresentsaninformedsamplingmethodthatisbasedonaclusteringapproach forthepredictionofseismichazardsinPolishcoalmines.Theideaisbasedonthedividingofnonhazardousexampleswhichrepresentsmorethan90%ofthereal-lifecasesintosubsetsofexamplesin ordertobalancetheclasses.Thisactionfacilitatesthelearningfromtherecordeddata.Forevaluation, theauthorshaveevaluatedthesystembasedonthepredictionofseismichazardswherepositive resultshavebeenreviewedcomparedtotheclassificationofexampleswithoutbalancingthecases. KEywoRDS Clustering, Data Mining, Machine Learning, Seismic Hazards Detection, Supervised Classification, Unbalanced Data
基于聚类的非平衡地震数据学习方法
Thisarticledescribeshowsomestratumcontainastressconcentrationzones,andwhilethestress增加了andexceedsahighvalueor socalledcriticalvalue,它破坏了岩石。This导致了emissionofseismictremorsofdifferentenergies。Seismologyconsistsofthestudyoftheeffectsof seismicwaves,andpredictingtheseismichazardstorocksandlongwallcoals。Thisisalongsidethe mainproblemoccurredinthisfield,theunbalanceddatathatlackscausewhenstudyingtheseismic危险。Learningfromunbalanceddataisconsideredasoneofthemostdifficultissuestosolve现在是thisarticlepresentsaninformedsamplingmethodthatisbasedonaclusteringapproach forthepredictionofseismichazardsinPolishcoalmines。Theideaisbasedonthedividingofnonhazardousexampleswhichrepresentsmorethan90%ofthereal-lifecasesintosubsetsofexamplesin ordertobalancetheclasses.Thisactionfacilitatesthelearningfromtherecordeddata。Forevaluation, theauthorshaveevaluatedthesystembasedonthepredictionofseismichazardswherepositive resultshavebeenreviewedcomparedtotheclassificationofexampleswithoutbalancingthecases。关键词聚类,数据挖掘,机器学习,地震灾害检测,监督分类,不平衡数据
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
25.00%
发文量
11
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信