{"title":"Uniform Sampling of the Infinite Noncooperative Game on Unit Hypercube and Reshaping Ultimately Multidimensional Matrices of Player’s Payoff Values","authors":"V. Romanuke","doi":"10.1515/ecce-2015-0002","DOIUrl":"https://doi.org/10.1515/ecce-2015-0002","url":null,"abstract":"Abstract The paper suggests a method of obtaining an approximate solution of the infinite noncooperative game on the unit hypercube. The method is based on sampling uniformly the players’ payoff functions with the constant step along each of the hypercube dimensions. The author states the conditions for a sufficiently accurate sampling and suggests the method of reshaping the multidimensional matrix of the player’s payoff values, being the former player’s payoff function before its sampling, into a matrix with minimally possible number of dimensions, where also maintenance of one-to-one indexing has been provided. Requirements for finite NE-strategy from NE (Nash equilibrium) solution of the finite game as the initial infinite game approximation are given as definitions of the approximate solution consistency. The approximate solution consistency ensures its relative independence upon the sampling step within its minimal neighborhood or the minimally decreased sampling step. The ultimate reshaping of multidimensional matrices of players’ payoff values to the minimal number of dimensions, being equal to the number of players, stimulates shortened computations.","PeriodicalId":42365,"journal":{"name":"Electrical Control and Communication Engineering","volume":"8 1","pages":"13 - 19"},"PeriodicalIF":0.7,"publicationDate":"2015-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67208486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
R. Kosenko, Liisa Liivik, A. Chub, Oleksandr Velihorskyi
{"title":"Comparative Analysis of Semiconductor Power Losses of Galvanically Isolated Quasi-Z-Source and Full-Bridge Boost DC-DC Converters","authors":"R. Kosenko, Liisa Liivik, A. Chub, Oleksandr Velihorskyi","doi":"10.1515/ecce-2015-0001","DOIUrl":"https://doi.org/10.1515/ecce-2015-0001","url":null,"abstract":"Abstract This paper compares semiconductor losses of the galvanically isolated quasi-Z-source converter and full-bridge boost DC-DC converter with active clamping circuit. Operation principle of both converters is described. Short design guidelines are provided as well. Results of steady state analysis are used to calculate semiconductor power losses for both converters. Analytical expressions are derived for all types of semiconductor power losses present in these converters. The theoretical results were verified by means of numerical simulation performed in the PSIM simulation software. Its add-on module “Thermal module” was used to estimate semiconductor power losses using the datasheet parameters of the selected semiconductor devices. Results of calculations and simulation study were obtained for four operating points with different input voltage and constant input current to compare performance of the converters in renewable applications, like photovoltaic, where input voltage and power can vary significantly. Power loss breakdown is detailed and its dependence on the converter output power is analyzed. Recommendations are given for the use of the converter topologies in applications with low input voltage and relatively high input current.","PeriodicalId":42365,"journal":{"name":"Electrical Control and Communication Engineering","volume":"8 1","pages":"12 - 5"},"PeriodicalIF":0.7,"publicationDate":"2015-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/ecce-2015-0001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67208422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Gasparjans, Aleksandrs Terebkovs, A. Zhiravetska
{"title":"Voltage Spectral Structure as a Parameter of System Technical Diagnostics of Ship Diesel Engine-Synchronous Generators","authors":"A. Gasparjans, Aleksandrs Terebkovs, A. Zhiravetska","doi":"10.1515/ecce-2015-0005","DOIUrl":"https://doi.org/10.1515/ecce-2015-0005","url":null,"abstract":"Abstract A method of technical diagnostics of ship diesel engine – generator installation – is proposed. Spectral-power diagnostic parameters of the synchronous generator voltage and currents are used. The electric machine in this case is the multipurpose sensor of diagnostic parameters. A judgment on the quality of the operational processes in diesel engine cylinders and its technical condition is possible on the basis of these parameters. This method is applicable to piston compressor installations with electric drive. On the basis of such parameters as rotating torque, angular speed and angular acceleration it is possible to estimate the quality of the operating process in the cylinders of a diesel engine, the condition of its cylinder-piston group and the crank gear mechanism. The investigation was realized on the basis of a diesel-generator with linear load. The generator operation was considered for the case of constant RL load. Together with the above mentioned, the condition of bearings of synchronous machines, uniformity of the air gap, windings of the electric machine were estimated during the experiments as well. The frequency spectrum of the stator current of the generator was researched and analyzed. In this case the synchronous machine is becoming a rather exact multipurpose diagnostic sensor. The signal of non-uniformity in the operation process of diesel engine cylinders and its technical condition is the increasing of the amplitudes of typical frequencies.","PeriodicalId":42365,"journal":{"name":"Electrical Control and Communication Engineering","volume":"8 1","pages":"37 - 42"},"PeriodicalIF":0.7,"publicationDate":"2015-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/ecce-2015-0005","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67208606","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Research in Adaptronic Automatic Control System and Biosensor System Modelling","authors":"V. Skopis, I. Uteshevs","doi":"10.1515/ecce-2015-0003","DOIUrl":"https://doi.org/10.1515/ecce-2015-0003","url":null,"abstract":"Abstract This paper describes the research on adaptronic systems made by the author and offers to use biosensors that can be later inserted into the adaptronic systems. Adaptronic systems are based, on the one hand, on the adaptronic approach when the system is designed not to always meet the worst condition, but to change the structure of the system according to the external conditions. On the other hand, it is an extension of common automatic control ad adaptive systems. So, in the introduction firstly the adaptronic approach and biosensor as a term is explained. Adaptive systems, upon which adaptronic ones are based, are also mentioned. Then the construction of biosensor is described, as well as some information is given about the classification of biosensors and their main groups. Also it is suggested to use lichen indicators in industry to control concentration of chemical substances in the air. After that mathematical models and computer experiments for adaptronic system and biosensor analysis are given.","PeriodicalId":42365,"journal":{"name":"Electrical Control and Communication Engineering","volume":"8 1","pages":"20 - 29"},"PeriodicalIF":0.7,"publicationDate":"2015-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/ecce-2015-0003","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67208502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Tesla Coil Theoretical Model and its Experimental Verification","authors":"J. Voitkāns, A. Voitkans","doi":"10.1515/ecce-2014-0018","DOIUrl":"https://doi.org/10.1515/ecce-2014-0018","url":null,"abstract":"Abstract In this paper a theoretical model of Tesla coil operation is proposed. Tesla coil is described as a long line with distributed parameters in a single-wire form, where the line voltage is measured across electrically neutral space. By applying the principle of equivalence of single-wire and two-wire schemes an equivalent two-wire scheme can be found for a single-wire scheme and the already known long line theory can be applied to the Tesla coil. A new method of multiple reflections is developed to characterize a signal in a long line. Formulas for calculation of voltage in Tesla coil by coordinate and calculation of resonance frequencies are proposed. The theoretical calculations are verified experimentally. Resonance frequencies of Tesla coil are measured and voltage standing wave characteristics are obtained for different output capacities in the single-wire mode. Wave resistance and phase coefficient of Tesla coil is obtained. Experimental measurements show good compliance with the proposed theory. The formulas obtained in this paper are also usable for a regular two-wire long line with distributed parameters.","PeriodicalId":42365,"journal":{"name":"Electrical Control and Communication Engineering","volume":"7 1","pages":"11 - 19"},"PeriodicalIF":0.7,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/ecce-2014-0018","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67207903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Current Sensorless Control Algorithm for Single-Phase Three-Level NPC Inverter","authors":"A. Suzdalenko, J. Zakis, I. Steiks","doi":"10.1515/ecce-2014-0020","DOIUrl":"https://doi.org/10.1515/ecce-2014-0020","url":null,"abstract":"Abstract The current measurement is becoming a challenging task in power converters operating at high switching frequencies, moreover traditional control system requires two control loops - first (slow) regulates DC-link voltage, second (fast) controls the shape of current, that all together results in complicated transfer function and long transition periods. The current sensorless control (CSC) allows neglecting the mentioned problems. This research for the first time presents the solution of CSC implementation in single-phase three-level neutral point clamped inverter. Mathematical equations were defined for inductor current peaks and transistor conduction time during discontinuous and continuous conduction modes, as well as major problem of current fitting between different voltage levels (consequently with different current peak-to-peak values) was solved, providing two solutions - pre-fitting and post-fitting trajectories. The verification of our theoretical assumptions and analytical equations was confirmed by the simulation analysis. Challenges of real experiments are discussed in the conclusion.","PeriodicalId":42365,"journal":{"name":"Electrical Control and Communication Engineering","volume":"7 1","pages":"28 - 33"},"PeriodicalIF":0.7,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/ecce-2014-0020","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67208104","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J. Gallardo-Lozano, E. Romero-Cadaval, M. Milanés-Montero, M. Guerrero-Martinez
{"title":"Battery Equalization Control Based on the Shunt Transistor Method","authors":"J. Gallardo-Lozano, E. Romero-Cadaval, M. Milanés-Montero, M. Guerrero-Martinez","doi":"10.1515/ecce-2014-0019","DOIUrl":"https://doi.org/10.1515/ecce-2014-0019","url":null,"abstract":"Abstract Electric Vehicle (EV) researches are currently becoming of special importance and the EV battery system is particularly relevant in the EV design. In these applications, series connected batteries are necessary since a single battery cannot achieve the voltage requirements. Internal and external sources lead the batteries string to become unbalanced, which is an important factor to be taken into account, as premature cells degradation, safety hazards, and reduced capacity will occur for unbalanced systems. The different balancing methods are presented and compared in this paper, and finally the switch capacitor and the double-tiered switching capacitor are considered the best option. However, their speed depends on the voltage difference between the batteries in the string, and when their voltage difference is low, the equalization speed decreases significantly, leading the battery pack to be unbalanced for longer. A novel equalization method is presented, that improves the aforementioned methods performance by applying a new control to a shunt transistor method. Low cost, size, and complexity, together with higher speed and efficiency are obtained. A prototype has been built, and experimental results are presented.","PeriodicalId":42365,"journal":{"name":"Electrical Control and Communication Engineering","volume":"7 1","pages":"20 - 27"},"PeriodicalIF":0.7,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/ecce-2014-0019","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67208020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Distributed Multi-Sensor Real-Time Building Environmental Parameters Monitoring System with Remote Data Access","authors":"Ivars Beinarts, U. Grunde, A. Jakovičs","doi":"10.1515/ecce-2014-0022","DOIUrl":"https://doi.org/10.1515/ecce-2014-0022","url":null,"abstract":"Abstract In this paper the advanced monitoring system of multiple environmental parameters is presented. The purpose of the system is a long-term estimation of energy efficiency and sustainability for the research test stands which are made of different building materials. Construction of test stands, and placement of main sensors are presented in the first chapter. The structure of data acquisition system includes a real-time interface with sensors and a data logger that allows to acquire and log data from all sensors with fixed rate. The data logging system provides a remote access to the processing of the acquired data and carries out periodical saving at a remote FTP server using an Internet connection. The system architecture and the usage of sensors are explained in the second chapter. In the third chapter implementation of the system, different interfaces of sensors and energy measuring devices are discussed and several examples of data logger program are presented. Each data logger is reading data from analog and digital channels. Measurements can be displayed directly on a screen using WEB access or using data from FTP server. Measurements and acquired data graphical results are presented in the fourth chapter in the selected diagrams. The benefits of the developed system are presented in the conclusion.","PeriodicalId":42365,"journal":{"name":"Electrical Control and Communication Engineering","volume":"7 1","pages":"41 - 46"},"PeriodicalIF":0.7,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/ecce-2014-0022","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67208352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Electromechanical Battery EMB Mass Minimization taking into Account its Electrical Machines Rotor Energy","authors":"Andrejs Podgornovs, Antons Sipovichs","doi":"10.1515/ecce-2014-0017","DOIUrl":"https://doi.org/10.1515/ecce-2014-0017","url":null,"abstract":"Abstract In this paper the electromechanical battery (EMB) with synchronous machine is described. Theoretically, if electrical machines rotor stored energy is known, it is possible to reduce the flywheel mass of electromechanical battery. For example, the efficiency of energy recovery (kilowatt-hours out versus kilowatthours in) in nowadays appliances exceeds 95 % which is considerably better than of any electrochemical battery, such as lead-acid battery. For the rotor stored energy amount calculation, it is necessary to find all geometrical dimensions of the electrical machine. To achieve this goal the iterative calculation method was used. Electromechanical battery mass was analyzed as a discharge process rotation speed function. Taking into account the rotor stored energy, we can increase the minimum rotation speed thus reducing the electrical machine mass and increasing the flywheel mass, which provides EMB cost reduction. Additionally, the possibilities of using numerical approximation calculations of magnetization curves are discussed. Each iteration of numerical application necessary for the method for rapid calculation is essential when calculating the field problems. Nowadays there are a lot of computer added design programs for electromagnetic field calculation in different types of applications, electrical machines and apparatus. For the electromagnetic field calculation process some more commonly used magnetization curve approximation methods are described, and the machine calculation time is tested for different numbers of calculations.","PeriodicalId":42365,"journal":{"name":"Electrical Control and Communication Engineering","volume":"7 1","pages":"10 - 5"},"PeriodicalIF":0.7,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/ecce-2014-0017","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67207796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Design Optimization with Geometric Programming for Core Type Large Power Transformers","authors":"T. Orosz, I. Vajda","doi":"10.2478/ecce-2014-0012","DOIUrl":"https://doi.org/10.2478/ecce-2014-0012","url":null,"abstract":"Abstract A good transformer design satisfies certain functions and requirements. We can satisfy these requirements by various designs. The aim of the manufacturers is to find the most economic choice within the limitations imposed by the constraint functions, which are the combination of the design parameters resulting in the lowest cost unit. One of the earliest application of the Geometric Programming [GP] is the optimization of power transformers. The GP formalism has two main advantages. First the formalism guarantees that the obtained solution is the global minimum. Second the new solution methods can solve even large-scale GPs extremely efficiently and reliably. The design optimization program seeks a minimum capitalized cost solution by optimally setting the transformer's geometrical and electrical parameters. The transformer's capitalized cost chosen for object function, because it takes into consideration the manufacturing and the operational costs. This paper considers the optimization for three winding, three phase, core-form power transformers. This paper presents the implemented transformer cost optimization model and the optimization results.","PeriodicalId":42365,"journal":{"name":"Electrical Control and Communication Engineering","volume":"6 1","pages":"13 - 18"},"PeriodicalIF":0.7,"publicationDate":"2014-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2478/ecce-2014-0012","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69199385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}