Classifying Scaled-Turned-Shifted Objects with Optimal Pixel-to-Scale-Turn-Shift Standard Deviations Ratio in Training 2-Layer Perceptron on Scaled-Turned-Shifted 4800-Featured Objects under Normally Distributed Feature Distortion

IF 0.5 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
V. Romanuke
{"title":"Classifying Scaled-Turned-Shifted Objects with Optimal Pixel-to-Scale-Turn-Shift Standard Deviations Ratio in Training 2-Layer Perceptron on Scaled-Turned-Shifted 4800-Featured Objects under Normally Distributed Feature Distortion","authors":"V. Romanuke","doi":"10.1515/ecce-2017-0007","DOIUrl":null,"url":null,"abstract":"Abstract The problem of classifying diversely distorted objects is considered. The classifier is a 2-layer perceptron capable of classifying greater amounts of objects in a unit of time. This is an advantage of the 2-layer perceptron over more complex neural networks like the neocognitron, the convolutional neural network, and the deep learning neural networks. Distortion types are scaling, turning, and shifting. The object model is a monochrome 60 × 80 image of the enlarged English alphabet capital letter. Consequently, there are 26 classes of 4800-featured objects. Training sets have a parameter, which is the ratio of the pixel-to-scale-turn-shift standard deviations, which allows controlling normally distributed feature distortion. An optimal ratio is found, at which the performance of the 2-layer perceptron is still unsatisfactory. Then, the best classifier is further trained with additional 438 passes of training sets by increasing the training smoothness tenfold. This aids in decreasing the ultimate classification error percentage from 35.23 % down to 12.92 %. However, the expected practicable distortions are smaller, so the percentage corresponding to them becomes just 1.64 %, which means that only one object out of 61 is misclassified. Such a solution scheme is directly applied to other classification problems, where the number of features is a thousand or a few thousands by a few tens of classes.","PeriodicalId":42365,"journal":{"name":"Electrical Control and Communication Engineering","volume":"13 1","pages":"45 - 54"},"PeriodicalIF":0.5000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/ecce-2017-0007","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrical Control and Communication Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/ecce-2017-0007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract The problem of classifying diversely distorted objects is considered. The classifier is a 2-layer perceptron capable of classifying greater amounts of objects in a unit of time. This is an advantage of the 2-layer perceptron over more complex neural networks like the neocognitron, the convolutional neural network, and the deep learning neural networks. Distortion types are scaling, turning, and shifting. The object model is a monochrome 60 × 80 image of the enlarged English alphabet capital letter. Consequently, there are 26 classes of 4800-featured objects. Training sets have a parameter, which is the ratio of the pixel-to-scale-turn-shift standard deviations, which allows controlling normally distributed feature distortion. An optimal ratio is found, at which the performance of the 2-layer perceptron is still unsatisfactory. Then, the best classifier is further trained with additional 438 passes of training sets by increasing the training smoothness tenfold. This aids in decreasing the ultimate classification error percentage from 35.23 % down to 12.92 %. However, the expected practicable distortions are smaller, so the percentage corresponding to them becomes just 1.64 %, which means that only one object out of 61 is misclassified. Such a solution scheme is directly applied to other classification problems, where the number of features is a thousand or a few thousands by a few tens of classes.
在正态分布特征失真下训练4800个特征物体上的2层感知器中,用最优像素-尺度转向偏移标准偏差率对4800个特征对象进行分类
摘要考虑了对不同失真对象进行分类的问题。分类器是一个2层感知器,能够在一个时间单位内对大量对象进行分类。这是2层感知器相对于更复杂的神经网络(如新认知网络、卷积神经网络和深度学习神经网络)的优势。失真类型包括缩放、旋转和移动。对象模型是放大的英文字母大写字母的单色60×80图像。因此,共有26类4800个特征对象。训练集有一个参数,该参数是像素与标度转向偏移标准偏差的比率,这允许控制正态分布的特征失真。找到了一个最佳比率,在该比率下,两层感知器的性能仍然不令人满意。然后,通过将训练平滑度提高十倍,用另外438次训练集来进一步训练最佳分类器。这有助于将最终分类误差百分比从35.23%降低到12.92%。然而,预期的实际失真较小,因此与之相对应的百分比仅为1.64%,这意味着61个对象中只有一个被错误分类。这种解决方案直接应用于其他分类问题,其中特征的数量是一千或几千乘几十类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Electrical Control and Communication Engineering
Electrical Control and Communication Engineering ENGINEERING, ELECTRICAL & ELECTRONIC-
自引率
14.30%
发文量
0
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信