{"title":"3D shear flows driven by Lévy noise at the boundary","authors":"W. Fan, A. Pakzad, Krutika Tawri, R. Temam","doi":"10.3934/puqr.2023004","DOIUrl":"https://doi.org/10.3934/puqr.2023004","url":null,"abstract":"","PeriodicalId":42330,"journal":{"name":"Probability Uncertainty and Quantitative Risk","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85349844","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Uniform convergence rates for spot volatility estimation","authors":"Chen Li, Pengtao Li, Yilun Zhang","doi":"10.3934/puqr.2023014","DOIUrl":"https://doi.org/10.3934/puqr.2023014","url":null,"abstract":"This study presents the uniform convergence rate for spot volatility estimators based on delta sequences. Kernel and Fourier-based estimators are examples of this type of estimator. We also present the uniform convergence rates for kernel and Fourier-based estimators of spot volatility as applications of the main result.","PeriodicalId":42330,"journal":{"name":"Probability Uncertainty and Quantitative Risk","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135749052","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"g-expectation of distributions","authors":"Mingyu Xu, Z. Xu, X. Zhou","doi":"10.3934/puqr.2022021","DOIUrl":"https://doi.org/10.3934/puqr.2022021","url":null,"abstract":"We define g -expectation of a distribution as the infimum of the g -expectations of all the terminal random variables sharing that distribution. We present two special cases for nonlinear g where the g -expectation of distributions can be explicitly de-rived. As a related problem, we introduce the notion of law-invariant g -expectation and provide its sufficient conditions. Examples of application in financial dynamic portfolio choice are supplied.","PeriodicalId":42330,"journal":{"name":"Probability Uncertainty and Quantitative Risk","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2022-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85255251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Non-linear affine processes with jumps","authors":"F. Biagini, Georg Bollweg, Katharina Oberpriller","doi":"10.3934/puqr.2023010","DOIUrl":"https://doi.org/10.3934/puqr.2023010","url":null,"abstract":"We present a probabilistic construction of $mathbb{R}^d$-valued non-linear affine processes with jumps. Given a set $Theta$ of affine parameters, we define a family of sublinear expectations on the Skorokhod space under which the canonical process $X$ is a (sublinear) Markov process with a non-linear generator. This yields a tractable model for Knightian uncertainty for which the sublinear expectation of a Markovian functional can be calculated via a partial integro-differential equation.","PeriodicalId":42330,"journal":{"name":"Probability Uncertainty and Quantitative Risk","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2022-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79408498","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Predictable forward performance processes in complete markets","authors":"Bahman Angoshtari","doi":"10.3934/puqr.2023007","DOIUrl":"https://doi.org/10.3934/puqr.2023007","url":null,"abstract":"We establish existence of Predictable Forward Performance Processes (PFPPs) in conditionally complete markets, which has been previously shown only in the binomial setting. Our market model can be a discrete-time or a continuous-time model, and the investment horizon can be finite or infinite. We show that the main step in construction of PFPPs is solving a one-period problem involving an integral equation, which is the counterpart of the functional equation found in the binomial case. Although this integral equation has been partially studied in the existing literature, we provide a new solution method using the Fourier transform for tempered distributions. We also provide closed-form solutions for PFPPs with inverse marginal functions that are completely monotonic and establish uniqueness of PFPPs within this class. We apply our results to two special cases. The first one is the binomial market and is included to relate our work to the existing literature. The second example considers a generalized Black-Scholes model which, to the best of our knowledge, is a new result.","PeriodicalId":42330,"journal":{"name":"Probability Uncertainty and Quantitative Risk","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2022-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87595608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Mean field games of controls: Propagation of monotonicities","authors":"Chenchen Mou, Jianfeng Zhang","doi":"10.3934/puqr.2022015","DOIUrl":"https://doi.org/10.3934/puqr.2022015","url":null,"abstract":"The theory of Mean Field Game of Controls considers a class of mean field games where the interaction is through the joint distribution of the state and control. It is well known that, for standard mean field games, certain monotonicity conditions are crucial to guarantee the uniqueness of mean field equilibria and then the global wellposedness for master equations. In the literature the monotonicity condition could be the Lasry–Lions monotonicity, the displacement monotonicity, or the anti-monotonicity conditions. In this paper, we investigate these three types of monotonicity conditions for Mean Field Games of Controls and show their propagation along the solutions to the master equations with common noises. In particular, we extend the displacement monotonicity to semi-monotonicity, whose propagation result is new even for standard mean field games. This is the first step towards the global wellposedness theory for master equations of Mean Field Games of Controls.","PeriodicalId":42330,"journal":{"name":"Probability Uncertainty and Quantitative Risk","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2022-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88050884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A note on the cluster set of the law of the iterated logarithm under sub-linear expectations","authors":"Li-Xin Zhang","doi":"10.3934/puqr.2022006","DOIUrl":"https://doi.org/10.3934/puqr.2022006","url":null,"abstract":"In this note, we establish a compact law of the iterated logarithm under the upper capacity for independent and identically distributed random variables in a sub-linear expectation space. For showing the result, a self-normalized law of the iterated logarithm is established.","PeriodicalId":42330,"journal":{"name":"Probability Uncertainty and Quantitative Risk","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2022-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78524477","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Quadratic mean-field reflected BSDEs","authors":"Ying Hu, R. Moreau, Falei Wang","doi":"10.3934/puqr.2022012","DOIUrl":"https://doi.org/10.3934/puqr.2022012","url":null,"abstract":"<p style='text-indent:20px;'>In this paper, we analyze mean-field reflected backward stochastic differential equations when the driver has quadratic growth in the second unknown <inline-formula><tex-math id=\"M1\">begin{document}$ z $end{document}</tex-math></inline-formula>. Using a linearization technique and the BMO martingale theory, we first apply a fixed-point argument to establish the uniqueness and existence result for the case with bounded terminal condition and obstacle. Then, with the help of the <inline-formula><tex-math id=\"M2\">begin{document}$ theta $end{document}</tex-math></inline-formula> -method, we develop a successive approximation procedure to remove the boundedness condition on the terminal condition and obstacle when the generator is concave (or convex) with respect to the second unknown <inline-formula><tex-math id=\"M3\">begin{document}$ z $end{document}</tex-math></inline-formula>.</p>","PeriodicalId":42330,"journal":{"name":"Probability Uncertainty and Quantitative Risk","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2022-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78719949","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Optimal control of SDEs with expected path constraints and related constrained FBSDEs","authors":"Ying Hu, Shanjian Tang, Z. Xu","doi":"10.3934/puqr.2022020","DOIUrl":"https://doi.org/10.3934/puqr.2022020","url":null,"abstract":"In this paper, we consider optimal control of stochastic differential equations subject to an expected path constraint. The stochastic maximum principle is given for a general optimal stochastic control in terms of constrained FBSDEs. In particular, the compensated process in our adjoint equation is deterministic, which seems to be new in the literature. For the typical case of linear stochastic systems and quadratic cost functionals (i.e., the so-called LQ optimal stochastic control), a verification theorem is established, and the existence and uniqueness of the constrained reflected FBSDEs are also given.","PeriodicalId":42330,"journal":{"name":"Probability Uncertainty and Quantitative Risk","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2022-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87221097","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Special issue dedicated to Alain Bensoussan on the occasion of his 80th birthday: Preface","authors":"R. Buckdahn, Juan Li, S. Peng","doi":"10.3934/puqr.2022010","DOIUrl":"https://doi.org/10.3934/puqr.2022010","url":null,"abstract":"<jats:p xml:lang=\"fr\" />","PeriodicalId":42330,"journal":{"name":"Probability Uncertainty and Quantitative Risk","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73766782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}