{"title":"Optimal control of SDEs with expected path constraints and related constrained FBSDEs","authors":"Ying Hu, Shanjian Tang, Z. Xu","doi":"10.3934/puqr.2022020","DOIUrl":null,"url":null,"abstract":"In this paper, we consider optimal control of stochastic differential equations subject to an expected path constraint. The stochastic maximum principle is given for a general optimal stochastic control in terms of constrained FBSDEs. In particular, the compensated process in our adjoint equation is deterministic, which seems to be new in the literature. For the typical case of linear stochastic systems and quadratic cost functionals (i.e., the so-called LQ optimal stochastic control), a verification theorem is established, and the existence and uniqueness of the constrained reflected FBSDEs are also given.","PeriodicalId":42330,"journal":{"name":"Probability Uncertainty and Quantitative Risk","volume":"17 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probability Uncertainty and Quantitative Risk","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/puqr.2022020","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we consider optimal control of stochastic differential equations subject to an expected path constraint. The stochastic maximum principle is given for a general optimal stochastic control in terms of constrained FBSDEs. In particular, the compensated process in our adjoint equation is deterministic, which seems to be new in the literature. For the typical case of linear stochastic systems and quadratic cost functionals (i.e., the so-called LQ optimal stochastic control), a verification theorem is established, and the existence and uniqueness of the constrained reflected FBSDEs are also given.
期刊介绍:
Probability, Uncertainty and Quantitative Risk (PUQR) is a quarterly academic journal under the supervision of the Ministry of Education of the People's Republic of China and hosted by Shandong University, which is open to the public at home and abroad (ISSN 2095-9672; CN 37-1505/O1).
Probability, Uncertainty and Quantitative Risk (PUQR) mainly reports on the major developments in modern probability theory, covering stochastic analysis and statistics, stochastic processes, dynamical analysis and control theory, and their applications in the fields of finance, economics, biology, and computer science. The journal is currently indexed in ESCI, Scopus, Mathematical Reviews, zbMATH Open and other databases.