Non-linear affine processes with jumps

IF 1 2区 数学 Q3 STATISTICS & PROBABILITY
F. Biagini, Georg Bollweg, Katharina Oberpriller
{"title":"Non-linear affine processes with jumps","authors":"F. Biagini, Georg Bollweg, Katharina Oberpriller","doi":"10.3934/puqr.2023010","DOIUrl":null,"url":null,"abstract":"We present a probabilistic construction of $\\mathbb{R}^d$-valued non-linear affine processes with jumps. Given a set $\\Theta$ of affine parameters, we define a family of sublinear expectations on the Skorokhod space under which the canonical process $X$ is a (sublinear) Markov process with a non-linear generator. This yields a tractable model for Knightian uncertainty for which the sublinear expectation of a Markovian functional can be calculated via a partial integro-differential equation.","PeriodicalId":42330,"journal":{"name":"Probability Uncertainty and Quantitative Risk","volume":"86 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probability Uncertainty and Quantitative Risk","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/puqr.2023010","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

Abstract

We present a probabilistic construction of $\mathbb{R}^d$-valued non-linear affine processes with jumps. Given a set $\Theta$ of affine parameters, we define a family of sublinear expectations on the Skorokhod space under which the canonical process $X$ is a (sublinear) Markov process with a non-linear generator. This yields a tractable model for Knightian uncertainty for which the sublinear expectation of a Markovian functional can be calculated via a partial integro-differential equation.
具有跳跃的非线性仿射过程
我们给出了$\mathbb{R}^d$值的具有跳跃的非线性仿射过程的一个概率构造。给定一个仿射参数集$\Theta$,我们在Skorokhod空间上定义了一系列次线性期望,在这些期望下,规范过程$X$是一个具有非线性生成器的(次线性)马尔可夫过程。这产生了一个易于处理的奈特不确定性模型,其中马尔可夫泛函的次线性期望可以通过偏积分-微分方程来计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
13.30%
发文量
29
审稿时长
12 weeks
期刊介绍: Probability, Uncertainty and Quantitative Risk (PUQR) is a quarterly academic journal under the supervision of the Ministry of Education of the People's Republic of China and hosted by Shandong University, which is open to the public at home and abroad (ISSN 2095-9672; CN 37-1505/O1). Probability, Uncertainty and Quantitative Risk (PUQR) mainly reports on the major developments in modern probability theory, covering stochastic analysis and statistics, stochastic processes, dynamical analysis and control theory, and their applications in the fields of finance, economics, biology, and computer science. The journal is currently indexed in ESCI, Scopus, Mathematical Reviews, zbMATH Open and other databases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信