{"title":"Adaptive Aperture Aided Antenna Design for SISO-MIMO Systems using Fuzzy C-Mean Clustering","authors":"Parismita A. Kashyap, K. K. Sarma","doi":"10.4018/IJWNBT.2015070103","DOIUrl":"https://doi.org/10.4018/IJWNBT.2015070103","url":null,"abstract":"One of the most relevant themes of wireless communication is to achieve better spectral efficiency and provide high reliability while providing rich-content data services despite the existence of several serious challenges. A few of them are multipath fading, multi-user interference, co-channel interference CCI, inter symbol interference ISI etc to name a few. Several techniques have already been developed and deployed to eliminate the fading effects. One of the less explored techniques which have been adopted and discussed in this chapter is based on the structure of the transmitting antenna. The physical dimension of the antenna is varied as per the fading condition by adopting a dynamic process which adjusts the structure to provide the best quality of service QoS. Two types of antenna set-ups are considered-Single Input-Single Output SISO and Multiple Input-Multiple Output MIMO. The transmitting antenna in this system adaptively updates its aperture to improve the system performance and at the same time optimizes the driving power of the antenna as per requirement. The system changes the effective aperture of the transmitting antenna in high data rate, time varying Rayleigh channels to adapt to a previously set Bit error Rate BER. However, in a real time environment the BER keeps on changing based on the channel condition. It is difficult to attain a fixed value of BER and hence even more difficult to model the antenna structure for a single time instant. As a result there exist a number of effective aperture dimensions for various BER in a single time instant. Out of the various values, two specific limits of the effective aperture of the transmitting antenna needs to be decided. Fuzzy C-Mean FCM Clustering method being one of the most popular and efficient clustering technique is used to set two limits of the aperture within which a particular threshold of the BER is obtained at one particular instant of time. The results derived show the effectiveness of the entire system.","PeriodicalId":422249,"journal":{"name":"Int. J. Wirel. Networks Broadband Technol.","volume":"76 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114229326","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Information Theoretic Approach with Reduced Paging Cost in Wireless Networks for Remote Healthcare Systems","authors":"R. Agrawal, Amit Sehgal","doi":"10.4018/IJWNBT.2015070101","DOIUrl":"https://doi.org/10.4018/IJWNBT.2015070101","url":null,"abstract":"This paper introduces an information theoretic approach for location management in cellular/mobile networks and allows the network to maintain the record of the mobility pattern of every user. The critical nature of remote healthcare service demands for continuous updates on the location of healthcare expert with the patient monitoring device. To reduce the paging cost, the proposed work uses the information from the system database by representing given past knowledge of the mobility pattern using Markov Chain. The expected search under the proposed work reduces number of search required in the earlier techniques. An entropy-per-location based scheme has also been introduced for comparative analysis among different models. This scheme can also be utilized as a general comparative framework for schemes to be introduced in future m-Health framework.","PeriodicalId":422249,"journal":{"name":"Int. J. Wirel. Networks Broadband Technol.","volume":"48 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124633167","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tejaswini Devanaboyina, Balakrishna Pillalamarri, G. R. Murthy
{"title":"Distributed Computation in Wireless Sensor Networks: Efficient Network Architectures and Applications in WSNs","authors":"Tejaswini Devanaboyina, Balakrishna Pillalamarri, G. R. Murthy","doi":"10.4018/IJWNBT.2015070102","DOIUrl":"https://doi.org/10.4018/IJWNBT.2015070102","url":null,"abstract":"Wireless Sensor Networks are used to perform distributed sensing in various fields like health, military, home etc where the sensor nodes communicate among themselves and do distributed computation over the sensed values to identify the occurrence of an event. The architecture for distributed computation of primitive recursive functions and median is presented in this paper. This paper assumes the no memory computational model of sensor nodes; in the architecture for primary recursive functions i.e. the sensor nodes only have two registers. This assumption is not made for the computation of median. This paper also explores the applications of wireless sensor networks in building a smart, hassle free transportation system. In purview of emerging technologies like Internet of things and Vehicular Ad Hoc networks, the transport system can be made user friendly by including itinerary planning, dynamic speed boards etc. Already research is moving in the direction of making transport system efficient and user-friendly. This paper serves as a one more step in the process of achieving it.","PeriodicalId":422249,"journal":{"name":"Int. J. Wirel. Networks Broadband Technol.","volume":"51 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127524749","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
C. Bouras, V. Kapoulas, Georgios Kioumourtzis, K. Stamos, N. Stathopoulos, Nikos Tavoularis
{"title":"A Signal Adaptation Mechanism for Power Optimization of Wireless Adapters","authors":"C. Bouras, V. Kapoulas, Georgios Kioumourtzis, K. Stamos, N. Stathopoulos, Nikos Tavoularis","doi":"10.4018/IJWNBT.2015070104","DOIUrl":"https://doi.org/10.4018/IJWNBT.2015070104","url":null,"abstract":"This manuscript introduces, implements and evaluates a feedback-based adaptation mechanism that adjusts the transmission power of a wireless card on commodity mobile devices. Main focus of this work is to minimize the power consumption by adjusting the transmission power of the wireless card, thus extending the battery life, while negative effects on connection quality are avoided. To achieve that, a mechanism that optimizes the power depending on the quality of the connection is presented, which measures the quality of the transmission and adjusts the transmission power, by utilizing an expanded array of metrics, for more accurate estimation. The mechanism has been implemented and tested on actual wireless adapters. In order to evaluate, fine-tune and improve the mechanism, a list of real environment experiments has been performed. The results indicate that power consumption can be significantly reduced for nodes that are either almost stationary or slowly moving, without any significant increase in packet loss.","PeriodicalId":422249,"journal":{"name":"Int. J. Wirel. Networks Broadband Technol.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124293698","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Varun Bhogal, Z. Prodanoff, S. Ahuja, Kenneth Martin
{"title":"On BFSA Collision Resolution in LF, HF, and UHF RFID Networks","authors":"Varun Bhogal, Z. Prodanoff, S. Ahuja, Kenneth Martin","doi":"10.4018/IJWNBT.2015040104","DOIUrl":"https://doi.org/10.4018/IJWNBT.2015040104","url":null,"abstract":"RFID radio frequency identification technology has gained popularity in a number of applications. Decreased cost of hardware components along with wide adoption of international RFID standards have led to the rise of this technology. One of the major factors associated with the implementation of RFID infrastructure is the cost of tags. RFID tags operating in the low frequency spectrum are widely used because they are the least expensive, but have a small implementation range. This paper presents an analysis of RFID performance across low frequency LF, high frequency HF, and ultra-high frequency UHF environments. The authors' evaluation is theoretical, using a passive-tag BFSA based simulation model that assumes 10 to 1,500 tags per reader and is created with OPNET Modeler 17. Ceteris paribus, the authors' results indicate that total census delay is lowest for UHF tags, while network throughput performance of LF tags is highest for large scale implementations of hundreds of tags in reader's range. A statistical analysis has been conducted on the findings for the three different sets.","PeriodicalId":422249,"journal":{"name":"Int. J. Wirel. Networks Broadband Technol.","volume":"27 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133632313","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Weighted Routing Scheme for Industrial Wireless Sensor Networks","authors":"Manish Kumar, R. Tripathi, S. Tiwari","doi":"10.4018/IJWNBT.2015040101","DOIUrl":"https://doi.org/10.4018/IJWNBT.2015040101","url":null,"abstract":"The WSNs replace the medium of communication from wired to wireless in industrial environment. This offer several advantages that includes easy and fast installation, low-cost maintenance and energy saving. In industrial monitoring and control application, the sensory measures should be delivered to control center in predefined deadline time, so the necessary actions may timely initiated. The geographical routing as reactive routing protocol plays a massive role for real-time packet delivery. The proposed routing protocol follows path discovery on demand basis to reduce the path discovery overhead. Moreover, the routing protocol follows weighted forwarding node selection process. This selects the shorter path over speedy reliable links for smaller deadline time and distributes the traffic over energy efficient node for larger deadline time. Through simulation, the authors demonstrate, compared to existing routing protocol the proposed routing protocol improves the packet delivery ratio along with enhanced network life while maintaining the high energy efficiency and low delivery latency.","PeriodicalId":422249,"journal":{"name":"Int. J. Wirel. Networks Broadband Technol.","volume":"101 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115371795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Designing a Compact Wireless Network based Device-free Passive Localisation System for Indoor Environments","authors":"P. Vance, G. Prasad, J. Harkin, K. Curran","doi":"10.4018/IJWNBT.2015040103","DOIUrl":"https://doi.org/10.4018/IJWNBT.2015040103","url":null,"abstract":"Determining the location of individuals within indoor locations can be useful in various scenarios including security, gaming and ambient assisted living for the elderly. Healthcare services globally are seeking to allow people to stay in their familiar home environments longer due to the multitude of benefits associated with living in non-clinical environments and technologies to determine an individual's movements are key to ensuring that home emergencies are detected through lack of movement can be responded to promptly. This paper proposes a device-free localisation DFL system which would enable the individual to proceed with normal daily activities without the concern of having to wear a traceable device. The principle behind this is that the human body absorbs/reflects the radio signal being transmitted from a transmitter to one or more receiving stations. The proposed system design procedure facilitates the use of a minimum number of wireless nodes with the help of a principle component analysis PCA based intelligent signal processing technique. Results demonstrate that human detection and tracking are possible to within 1m resolution with a minimal hardware infrastructure.","PeriodicalId":422249,"journal":{"name":"Int. J. Wirel. Networks Broadband Technol.","volume":"106 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122601979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Correlations between Centrality Measures for Mobile Ad hoc Networks","authors":"N. Meghanathan","doi":"10.4018/IJWNBT.2015040102","DOIUrl":"https://doi.org/10.4018/IJWNBT.2015040102","url":null,"abstract":"The author conducts an extensive correlation coefficient analysis of four prominent centrality measures for mobile ad hoc networks. The centrality measures considered are the degree-based degree centrality and eigenvector centrality, and the shortest path-based betweenness centrality and closeness centrality. The author evaluates the correlation coefficient between any two of the above four centrality measures as a function of network connectivity and node mobility. He observes a consistent ranking with respect to the correlation coefficients among the pairs of centrality measures for all levels of network connectivity, node mobility and across the duration of the simulation session. The shortest path-based closeness centrality measure exhibits high correlation with the degree-based centrality measures, whereas the betweenness centrality exhibits relatively weak correlation with the degree-based centrality measures. For a given level of node mobility and network connectivity, the author does not observe the correlation coefficient values between any two centrality measures to significantly change with time.","PeriodicalId":422249,"journal":{"name":"Int. J. Wirel. Networks Broadband Technol.","volume":"47 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130715213","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Lifetime Enhancement of Wireless Multimedia Sensor Networks Using Data Compression","authors":"Pushpender Kumar Dhiman, N. Chand","doi":"10.4018/IJWNBT.2015040105","DOIUrl":"https://doi.org/10.4018/IJWNBT.2015040105","url":null,"abstract":"Wireless Sensor Network WSN has limited resources such as energy, computation and transmission capacity. These resources are not sufficient for transmitting large amount of data collected by the sensor nodes. Wireless Multimedia Sensor Network WMSN generates large amount of data that requires more energy and transmission capacity as compared to scalar data. So it is desired to perform in-network data compression in WMSN. In this paper the authors have used Principal Component Analysis PCA technique for data compression. PCA can be efficiently used in wireless multimedia sensor network to reduce the energy consumption, reduce the network load and prolong the network lifetime. Simulation results show that PCA based compression conserves energy of sensor nodes and prolongs the lifetime of WMSN.","PeriodicalId":422249,"journal":{"name":"Int. J. Wirel. Networks Broadband Technol.","volume":"19 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123187191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
K. Kapetanakis, M. Zampoglou, A. Malamos, S. Panagiotakis, E. Maravelakis
{"title":"An MPEG-DASH Methodology for QoE-Aware Web3D Streaming","authors":"K. Kapetanakis, M. Zampoglou, A. Malamos, S. Panagiotakis, E. Maravelakis","doi":"10.4018/ijwnbt.2014100101","DOIUrl":"https://doi.org/10.4018/ijwnbt.2014100101","url":null,"abstract":"Recent advances in web technologies have now created a ubiquitous environment for cross-platform and cross-device multimedia applications. Media files can now be reproduced in a wide range of devices, from mobile phones to desktop computers and web-enabled televisions, using a common infrastructure. This trend towards unifying the technological infrastructure, however, has given rise to a new array of problems resulting from the varying technological capabilities of the different devices and environments. This paper, proposes an adaptive streaming framework for the display of 3D models on a wide range of web-enabled devices. The open, XML-based X3D language for 3D graphics is combined with the MPEG-DASH standard for adaptive streaming. The end result is a framework that can adaptively display 3D graphics in the face of network or computational limitations, and dynamically adapt data flow to maximize user Quality of Experience in any situation.","PeriodicalId":422249,"journal":{"name":"Int. J. Wirel. Networks Broadband Technol.","volume":"8 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132322563","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}