Yoo, Jaewon, Im Jong Chul, Seo Minsu, Changyoung Kim, Sang-Kyun Kang
{"title":"A Study on Estimation of Degree of Compaction by Correction for Coarse Particle Ratio of Fill Material","authors":"Yoo, Jaewon, Im Jong Chul, Seo Minsu, Changyoung Kim, Sang-Kyun Kang","doi":"10.12814/JKGSS.2018.17.1.065","DOIUrl":"https://doi.org/10.12814/JKGSS.2018.17.1.065","url":null,"abstract":"The degree of compaction of embankments is generally measured using the sand replacement method or a soil density gauge. However, these methods include coarse particles, which are relatively large. The degree of compaction is overestimated if the in-situ soil density is simply compared with the density obtained from a Proctor compaction test (KS F 2312, 2001), because the density of coarse particles is higher than that of soil. However, there is no recommended correction for the coarse particle ratio in Korea, thus intentionally increasing the degree of compaction for structures to which large loads are applied or for which compaction is critical. Here, a correction considering the Korean Proctor compaction test and the difference between the maximum allowable particle sizes was recommended after corrections for coarse particle ratios in other countries were collected and analyzed. The degree of compaction was re-estimated by applying the recommended correction to the results of both Proctor compaction and sand replacement tests. The degree of compaction without the correction of coarse particle ratio was overestimated, because the re-estimated degree of compaction decreased as the coarse particle ratio increased. The relatively accurate results obtained from the field application of the correction will offer long-term cost savings due to reduced maintenance fees during operation.","PeriodicalId":42164,"journal":{"name":"Journal of the Korean Geosynthetic Society","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80325198","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Installation Damage Reduction Factor for Geosynthetics Reinforcements Based on Various Full-Scale Field Installation Tests","authors":"S. Cho, K. Lee","doi":"10.12814/jkgss.2018.17.4.225","DOIUrl":"https://doi.org/10.12814/jkgss.2018.17.4.225","url":null,"abstract":"In this paper, to investigate the influence of installation damage, a variety of full-scale field installation tests with 15 geosynthetics reinforcements and fill materials of various grain size distribution have been performed. The full-scale field installation test was conducted with reference to the FHWA (2009) guidelines. The tensile strength tests were performed by sampling up to 20 specimens randomly from the excavated geosynthetics reinforcements after compaction of fill material, and the degree of decrease in tensile strength of reinforcements due to compaction was analyzed based on the experiment results. It was found that the degree of tensile strength reduction of geosynthetics reinforcements due to the compaction of fill material is greatly influenced by the type of reinforcement and the maximum diameter of fill material. In addition, it was found that the strength reduction ratio of PET geogrid (PVC coating) with relatively small stiffness was greatest, and that the larger the maximum grain size of the fill material, the greater the strength reduction ratio. And also, a more reasonable evaluation method for the installation damage reduction factor of geosynthetics reinforcements is proposed based on the results of full-scale field installation tests in present study and the existing test results.","PeriodicalId":42164,"journal":{"name":"Journal of the Korean Geosynthetic Society","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79096155","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kicheol Lee, Jongho Park, Byeong-Hyun Choi, Dongwook Kim
{"title":"Analysis of Influencing Factors on Cavity Collapse and Evaluation of the Existing Cavity Management System","authors":"Kicheol Lee, Jongho Park, Byeong-Hyun Choi, Dongwook Kim","doi":"10.12814/JKGSS.2018.17.1.045","DOIUrl":"https://doi.org/10.12814/JKGSS.2018.17.1.045","url":null,"abstract":"In this study, numerical analysis is performed to determine highly influential factors that increase the possibility of asphalt road collapse due to cavity underneath the road. The considered influence factors on road collapse due to underground cavity were the asphalt layer thickness, the cover depth, the cavity width, and the cavity height. The concentrated load and uniform distributed pressure were applied on the top surface of asphalt pavement layers with different shape of cavity and asphalt thickness. For each analysis case of given cavity and asphalt thickness, failure load was analyzed under displacement controlled condition. Based on the analyzed failure loads, the applicability of the cavity management system developed by Seoul city was evaluated. As a result of the analysis, the effect of cavity height on road collapse was not significant while the other factors considerably influenced road collapse. Consequently, degree of road collapse susceptibility should be classified by failure load rather than by the condition of existing cavity.","PeriodicalId":42164,"journal":{"name":"Journal of the Korean Geosynthetic Society","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79785235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Case Study on Risk Assessment and Probability of Failure for Port Structure Reinforced by DCM Method","authors":"Byung Il Kim, E. Park","doi":"10.12814/JKGSS.2018.17.4.053","DOIUrl":"https://doi.org/10.12814/JKGSS.2018.17.4.053","url":null,"abstract":"","PeriodicalId":42164,"journal":{"name":"Journal of the Korean Geosynthetic Society","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75787656","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kicheol Lee, Soon-Ju Choi, Dongwook Kim, Chulho Lee
{"title":"Numerical Study on Direct Shear Test of Composite Shotcrete with Sprayable Waterproofing Membrane","authors":"Kicheol Lee, Soon-Ju Choi, Dongwook Kim, Chulho Lee","doi":"10.12814/JKGSS.2018.17.4.189","DOIUrl":"https://doi.org/10.12814/JKGSS.2018.17.4.189","url":null,"abstract":"A sprayable waterproofing membrane which has relatively high adhesive property onto concrete enables faster construction with better waterproof performance compared with a conventional sheet membrane. However, the sprayable waterproofing membrane is a recently developed material and its performance and behavior with structures are not sufficiently reported. Therefore, in this study, the shear behavior of sprayable waterproofing membrane was numerically analyzed using the results of previous studies of composite shotcrete with sprayable waterproofing membrane. From the previous study, shear behavior of shotcrete with sprayable waterproofing membrane was different from shotcrete case and there was a limitation to express the behavior of the interface in general shear strength method. Therefore, in this study, the direct shear test was numerically simulated using two contact models, and then the best suitable method to express the shear behavior of the sprayable waterproofing membrane was suggested.","PeriodicalId":42164,"journal":{"name":"Journal of the Korean Geosynthetic Society","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76245843","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Fundamental Study on Evaluation of Corrected Compression Index by Plasticity Index in Marine Clayey Soils","authors":"박성백, Lee, Kang-il, Seo. Se Gwan","doi":"10.12814/jkgss.2018.17.3.009","DOIUrl":"https://doi.org/10.12814/jkgss.2018.17.3.009","url":null,"abstract":"The soil parameters important for the design of the soft ground are the compression index (Cc), the consolidation settlement and consolidation speed at the field. Compression index is obtained by laboratory consolidation test. In the laboratory consolidation test, sample disturbance always occurs. In order to correct the disturbance phenomena, the method of calculating the compression index proposed by Schmertmann (1955) is generally used. However, recent developments in sampling technology and Korean soil conditions are different from those proposed by Schmertmann. So it needs to be verified. In this study, each consolidation curve’s cross void ratio is evaluated by doing consolidation test varying disturbance on high-plastic clay (CH), low-plastic clay (CL) and low-plastic silt (ML). The test results were 0.521 for low-plastic silt, 0.404 for low-plastic clay, and 0.458 for the high-plastic clay. This results were different from those of Schmertmann’s suggested value of 0.42 . Therefor we proposed a correction formula using the plastic index according to soil type. However, since the results of this study are limited test results, further studies on various korean soil are needed to suggest the compression index correction method according to the degree of plasticity index of soil. 요 지 연약지반 설계에 중요한 지반정수는 압축지수(Cc)이며, 현장의 압밀침하량 및 압밀침하속도를 산출하는데 필요하다. 이러한 압축지수 산정은 실내압밀시험을 통해 얻어지는데, 실내압밀시험에서는 반드시 시료교란이 발생하며, 이러한 교란현상을 보정 하기 위하여 Schmertmann(1955)이 제시한 보정 압축지수 산정방법이 일반적으로 사용되고 있다. 그러나 최근 시료 샘플링기 술의 발전과 국내 지반조건 등이 Schmertmann이 제시한 것과 상이하므로 이에 대한 검증이 필요하다. 이에 본 연구에서는 저소성 실트(ML), 저소성(CL) 및 고소성 점토시료(CH)에 대하여 교란도를 변화시켜 압밀시험을 실시하여 각각의 압밀곡선의 교차 간극비를 평가하였다. 시험결과 저소성 실트(ML)의 경우 0.521 , 저소성 점토(CL)의 경우 0.404 , 고소성 점토(CH)의 경우 0.458로 산정되어, Schmertmann이 제시한 0.42의 보정값과 다른 결과를 확인하였으며, 흙의 종류에 따른 소성지수 (PI)를 활용한 보정식을 제안하였다. 그러나 본 연구결과는 한정된 지역에서의 시험결과이므로 흙의 소성도에 따른 압축지수 보정방법을 제시하기 위해서 다양한 국내 점토에 대한 후속연구가 필요할 것으로 판단된다.","PeriodicalId":42164,"journal":{"name":"Journal of the Korean Geosynthetic Society","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82211642","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Development of the Dredged Sediments Management System and Its Managing Criteria of Debris Barrier","authors":"Song Young-Suk, Yun Jung Mann, I. Jung","doi":"10.12814/jkgss.2018.17.4.267","DOIUrl":"https://doi.org/10.12814/jkgss.2018.17.4.267","url":null,"abstract":"","PeriodicalId":42164,"journal":{"name":"Journal of the Korean Geosynthetic Society","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84281855","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chul-Jin Yang, J. Bae, Ho-Seok Byun, Kang-Hwi Lee, Jong-Sik Lee
{"title":"Analysis of Mechanical Properties of Solidified soil using Pig Iron Slag","authors":"Chul-Jin Yang, J. Bae, Ho-Seok Byun, Kang-Hwi Lee, Jong-Sik Lee","doi":"10.12814/JKGSS.2018.17.1.001","DOIUrl":"https://doi.org/10.12814/JKGSS.2018.17.1.001","url":null,"abstract":"We conducted research to develop a solidification agent for the ground surface reinforcement method in which activator is fused by recycling pig iron slag, which is a byproduct generated in the steel making process. The purpose of this research is to solve the problems of surface soil by improving the strength and durability of foundation soil such as soil loss, settlement, sinkhole, etc. by recycling pig iron slag from disused or landfilled steelworks. For this purpose, the possibility of using pig iron slag as a solidification soil was evaluated by the compressive strength, elution test of harmful materials, permeability coefficient test. As a result of the compressive strength test, the values of the strength of the curing 28 days of the solidified soil having the solidification agent mixing ratio of 12% were found to be 0.93, 0.96 and 1.3 MPa, respectively, satisfying the required strength value of 1 MPa, In the case of permeability coefficients, the minimum values were 4.1 × 10, 7.0 × 10, and 1.7 × 10 cm/sec, respectively, at the solidification agent mixing rate of 12%. In addition, as a result of the elution test of harmful materials, a small amount was detected in the item of hexavalent chromium but satisfied the inclusion criteria, and in the remaining items, heavy metals were not eluted.","PeriodicalId":42164,"journal":{"name":"Journal of the Korean Geosynthetic Society","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87853450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Derivation of Flexural Rigidity Formula for Two-row Overlap Pile Wall","authors":"Choi, WonHyuk, Kim, Bumjoo","doi":"10.12814/JKGSS.2018.17.4.109","DOIUrl":"https://doi.org/10.12814/JKGSS.2018.17.4.109","url":null,"abstract":"","PeriodicalId":42164,"journal":{"name":"Journal of the Korean Geosynthetic Society","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91345761","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Development and Uncertainty Assessment of Interface Friction Prediction Equation Between Steel Surface and Cohesionless Soils","authors":"Kicheol Lee, Kim, Soyeun, Dongwook Kim","doi":"10.12814/JKGSS.2018.17.2.033","DOIUrl":"https://doi.org/10.12814/JKGSS.2018.17.2.033","url":null,"abstract":"","PeriodicalId":42164,"journal":{"name":"Journal of the Korean Geosynthetic Society","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74600059","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}