Epijournal de Geometrie Algebrique最新文献

筛选
英文 中文
Algebraic subgroups of the group of birational transformations of ruled surfaces 直纹曲面的两族变换群的代数子群
IF 0.8
Epijournal de Geometrie Algebrique Pub Date : 2021-11-18 DOI: 10.46298/epiga.2023.8734
Pascal Fong
{"title":"Algebraic subgroups of the group of birational transformations of ruled surfaces","authors":"Pascal Fong","doi":"10.46298/epiga.2023.8734","DOIUrl":"https://doi.org/10.46298/epiga.2023.8734","url":null,"abstract":"We classify the maximal algebraic subgroups of Bir(CxPP^1), when C is a\u0000smooth projective curve of positive genus.","PeriodicalId":41470,"journal":{"name":"Epijournal de Geometrie Algebrique","volume":"1 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2021-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70485024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Abundance for slc surfaces over arbitrary fields 任意场上slc曲面的丰度
IF 0.8
Epijournal de Geometrie Algebrique Pub Date : 2021-10-20 DOI: 10.46298/epiga.2023.volume7.8803
Quentin Posva
{"title":"Abundance for slc surfaces over arbitrary fields","authors":"Quentin Posva","doi":"10.46298/epiga.2023.volume7.8803","DOIUrl":"https://doi.org/10.46298/epiga.2023.volume7.8803","url":null,"abstract":"We prove the abundance conjecture for projective slc surfaces over arbitrary\u0000fields of positive characteristic. The proof relies on abundance for lc\u0000surfaces over abritrary fields, proved by Tanaka, and on the technique of Hacon\u0000and Xu to descend semi-ampleness from the normalization. We also present\u0000applications to dlt threefold pairs, and to mixed characteristic families of\u0000surfaces.","PeriodicalId":41470,"journal":{"name":"Epijournal de Geometrie Algebrique","volume":"1 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2021-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70485455","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
A conjectural formula for $DR_g(a,-a) lambda_g$ $DR_g(A,-a) lambda_g$的推测公式
IF 0.8
Epijournal de Geometrie Algebrique Pub Date : 2021-09-30 DOI: 10.46298/epiga.2022.8595
A. Buryak, Francisco Hernandez Iglesias, S. Shadrin
{"title":"A conjectural formula for $DR_g(a,-a) lambda_g$","authors":"A. Buryak, Francisco Hernandez Iglesias, S. Shadrin","doi":"10.46298/epiga.2022.8595","DOIUrl":"https://doi.org/10.46298/epiga.2022.8595","url":null,"abstract":"We propose a conjectural formula for $DR_g(a,-a) lambda_g$ and check all its\u0000expected properties. Our formula refines the one point case of a similar\u0000conjecture made by the first named author in collaboration with Gu'er'e and\u0000Rossi, and we prove that the two conjectures are in fact equivalent, though in\u0000a quite non-trivial way.","PeriodicalId":41470,"journal":{"name":"Epijournal de Geometrie Algebrique","volume":"36 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2021-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70484222","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Serre-invariant stability conditions and Ulrich bundles on cubic threefolds 三次三重上的Serre不变稳定性条件和Ulrich丛
IF 0.8
Epijournal de Geometrie Algebrique Pub Date : 2021-09-28 DOI: 10.46298/epiga.2022.9611
S. Feyzbakhsh, L. Pertusi
{"title":"Serre-invariant stability conditions and Ulrich bundles on cubic threefolds","authors":"S. Feyzbakhsh, L. Pertusi","doi":"10.46298/epiga.2022.9611","DOIUrl":"https://doi.org/10.46298/epiga.2022.9611","url":null,"abstract":"We prove a general criterion which ensures that a fractional Calabi--Yau\u0000category of dimension $leq 2$ admits a unique Serre-invariant stability\u0000condition, up to the action of the universal cover of\u0000$text{GL}^+_2(mathbb{R})$. We apply this result to the Kuznetsov component\u0000$text{Ku}(X)$ of a cubic threefold $X$. In particular, we show that all the\u0000known stability conditions on $text{Ku}(X)$ are invariant with respect to the\u0000action of the Serre functor and thus lie in the same orbit with respect to the\u0000action of the universal cover of $text{GL}^+_2(mathbb{R})$. As an\u0000application, we show that the moduli space of Ulrich bundles of rank $geq 2$\u0000on $X$ is irreducible, answering a question asked by Lahoz, Macr`i and\u0000Stellari.","PeriodicalId":41470,"journal":{"name":"Epijournal de Geometrie Algebrique","volume":" ","pages":""},"PeriodicalIF":0.8,"publicationDate":"2021-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49556028","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
Trace formalism for motivic cohomology 动机上同的迹形式论
IF 0.8
Epijournal de Geometrie Algebrique Pub Date : 2021-08-17 DOI: 10.46298/epiga.2023.9742
Tomoyuki Abe
{"title":"Trace formalism for motivic cohomology","authors":"Tomoyuki Abe","doi":"10.46298/epiga.2023.9742","DOIUrl":"https://doi.org/10.46298/epiga.2023.9742","url":null,"abstract":"The goal of this paper is to construct trace maps for the six functor\u0000formalism of motivic cohomology after Voevodsky, Ayoub, and\u0000Cisinski-D'{e}glise. We also construct an $infty$-enhancement of such a trace\u0000formalism. In the course of the $infty$-enhancement, we need to reinterpret\u0000the trace formalism in a more functorial manner. This is done by using\u0000Suslin-Voevodsky's relative cycle groups.","PeriodicalId":41470,"journal":{"name":"Epijournal de Geometrie Algebrique","volume":"1 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2021-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70485203","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Smoothability of relative stable maps to stacky curves 相对稳定映射到堆叠曲线的平滑性
IF 0.8
Epijournal de Geometrie Algebrique Pub Date : 2021-08-11 DOI: 10.46298/epiga.2023.volume7.8702
Kenneth Ascher, Dori Bejleri
{"title":"Smoothability of relative stable maps to stacky curves","authors":"Kenneth Ascher, Dori Bejleri","doi":"10.46298/epiga.2023.volume7.8702","DOIUrl":"https://doi.org/10.46298/epiga.2023.volume7.8702","url":null,"abstract":"Using log geometry, we study smoothability of genus zero twisted stable maps\u0000to stacky curves relative to a collection of marked points. One application is\u0000to smoothing semi-log canonical fibered surfaces with marked singular fibers.","PeriodicalId":41470,"journal":{"name":"Epijournal de Geometrie Algebrique","volume":"1 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2021-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70485391","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Tropicalization of the universal Jacobian 普遍Jacobian的回归化
IF 0.8
Epijournal de Geometrie Algebrique Pub Date : 2021-08-10 DOI: 10.46298/epiga.2022.8352
Margarida Melo, S. Molcho, Martin Ulirsch, Filippo Viviani
{"title":"Tropicalization of the universal Jacobian","authors":"Margarida Melo, S. Molcho, Martin Ulirsch, Filippo Viviani","doi":"10.46298/epiga.2022.8352","DOIUrl":"https://doi.org/10.46298/epiga.2022.8352","url":null,"abstract":"In this article we provide a stack-theoretic framework to study the universal\u0000tropical Jacobian over the moduli space of tropical curves. We develop two\u0000approaches to the process of tropicalization of the universal compactified\u0000Jacobian over the moduli space of curves -- one from a logarithmic and the\u0000other from a non-Archimedean analytic point of view. The central result from\u0000both points of view is that the tropicalization of the universal compactified\u0000Jacobian is the universal tropical Jacobian and that the tropicalization maps\u0000in each of the two contexts are compatible with the tautological morphisms. In\u0000a sequel we will use the techniques developed here to provide explicit\u0000polyhedral models for the logarithmic Picard variety.","PeriodicalId":41470,"journal":{"name":"Epijournal de Geometrie Algebrique","volume":" ","pages":""},"PeriodicalIF":0.8,"publicationDate":"2021-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49317398","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
A gluing construction of projective K3 surfaces 投影K3曲面的粘合构造
IF 0.8
Epijournal de Geometrie Algebrique Pub Date : 2021-07-25 DOI: 10.46298/epiga.2022.volume6.8504
T. Koike, Takato Uehara
{"title":"A gluing construction of projective K3 surfaces","authors":"T. Koike, Takato Uehara","doi":"10.46298/epiga.2022.volume6.8504","DOIUrl":"https://doi.org/10.46298/epiga.2022.volume6.8504","url":null,"abstract":"We construct a non-Kummer projective K3 surface $X$ which admits compact\u0000Levi-flats by holomorphically patching two open complex surfaces obtained as\u0000the complements of tubular neighborhoods of elliptic curves embedded in\u0000blow-ups of the projective plane at nine general points.","PeriodicalId":41470,"journal":{"name":"Epijournal de Geometrie Algebrique","volume":"1 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2021-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70484896","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
A characterization of finite 'etale morphisms in tensor triangular geometry 张量三角形几何中有限态射的表征
IF 0.8
Epijournal de Geometrie Algebrique Pub Date : 2021-06-26 DOI: 10.46298/epiga.2022.volume6.7641
Beren Sanders
{"title":"A characterization of finite 'etale morphisms in tensor triangular geometry","authors":"Beren Sanders","doi":"10.46298/epiga.2022.volume6.7641","DOIUrl":"https://doi.org/10.46298/epiga.2022.volume6.7641","url":null,"abstract":"We provide a characterization of finite 'etale morphisms in tensor\u0000triangular geometry. They are precisely those functors which have a\u0000conservative right adjoint, satisfy Grothendieck--Neeman duality, and for which\u0000the relative dualizing object is trivial (via a canonically-defined map).","PeriodicalId":41470,"journal":{"name":"Epijournal de Geometrie Algebrique","volume":"1 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2021-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70484838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Crepant semi-divisorial log terminal model 蠕变半分对数终端模型
IF 0.8
Epijournal de Geometrie Algebrique Pub Date : 2021-06-23 DOI: 10.46298/epiga.2021.7626
K. Hashizume
{"title":"Crepant semi-divisorial log terminal model","authors":"K. Hashizume","doi":"10.46298/epiga.2021.7626","DOIUrl":"https://doi.org/10.46298/epiga.2021.7626","url":null,"abstract":"We prove the existence of a crepant sdlt model for slc pairs whose\u0000irreducible components are normal in codimension one.","PeriodicalId":41470,"journal":{"name":"Epijournal de Geometrie Algebrique","volume":" ","pages":""},"PeriodicalIF":0.8,"publicationDate":"2021-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48286167","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信