任意场上slc曲面的丰度

Pub Date : 2021-10-20 DOI:10.46298/epiga.2023.volume7.8803
Quentin Posva
{"title":"任意场上slc曲面的丰度","authors":"Quentin Posva","doi":"10.46298/epiga.2023.volume7.8803","DOIUrl":null,"url":null,"abstract":"We prove the abundance conjecture for projective slc surfaces over arbitrary\nfields of positive characteristic. The proof relies on abundance for lc\nsurfaces over abritrary fields, proved by Tanaka, and on the technique of Hacon\nand Xu to descend semi-ampleness from the normalization. We also present\napplications to dlt threefold pairs, and to mixed characteristic families of\nsurfaces.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Abundance for slc surfaces over arbitrary fields\",\"authors\":\"Quentin Posva\",\"doi\":\"10.46298/epiga.2023.volume7.8803\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove the abundance conjecture for projective slc surfaces over arbitrary\\nfields of positive characteristic. The proof relies on abundance for lc\\nsurfaces over abritrary fields, proved by Tanaka, and on the technique of Hacon\\nand Xu to descend semi-ampleness from the normalization. We also present\\napplications to dlt threefold pairs, and to mixed characteristic families of\\nsurfaces.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46298/epiga.2023.volume7.8803\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/epiga.2023.volume7.8803","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

证明了任意正特征域上射影slc曲面的丰度猜想。该证明依赖于Tanaka证明的任意域上的曲面的丰度,以及Haconand Xu从归一化降半丰度的技术。我们也提出了三重对和表面混合特征族的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Abundance for slc surfaces over arbitrary fields
We prove the abundance conjecture for projective slc surfaces over arbitrary fields of positive characteristic. The proof relies on abundance for lc surfaces over abritrary fields, proved by Tanaka, and on the technique of Hacon and Xu to descend semi-ampleness from the normalization. We also present applications to dlt threefold pairs, and to mixed characteristic families of surfaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信