Polymer Degradation and Stability最新文献

筛选
英文 中文
Flammability and thermal analysis of vertically oriented polyvinyl alcohol/DOPO derivative/MXene composite aerogel 垂直定向聚乙烯醇/DOPO 衍生物/二甲苯复合气凝胶的可燃性和热分析
IF 6.3 2区 化学
Polymer Degradation and Stability Pub Date : 2024-09-12 DOI: 10.1016/j.polymdegradstab.2024.111006
Ying Zhou , Weidi He , Jiling Song , Dinghong Xu , Hongmin Wu , Jianbing Guo
{"title":"Flammability and thermal analysis of vertically oriented polyvinyl alcohol/DOPO derivative/MXene composite aerogel","authors":"Ying Zhou ,&nbsp;Weidi He ,&nbsp;Jiling Song ,&nbsp;Dinghong Xu ,&nbsp;Hongmin Wu ,&nbsp;Jianbing Guo","doi":"10.1016/j.polymdegradstab.2024.111006","DOIUrl":"10.1016/j.polymdegradstab.2024.111006","url":null,"abstract":"<div><p>The fabrication of ultralight high-performance flame-retardant composites significantly reduces fire risk for buildings. Flame retardation of porous polyvinyl alcohol (PVA) aerogels with directional arrangement is difficult. Herein, the polyvinyl alcohol/ 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide derivative/two-dimensional (2D) MXene (PVA/DiDOPO/MXene) composite aerogel was prepared by ice template one-way freezing process. PVA-DiDOPO4 composite aerogel with an oriented porous structure reaches the V-1 level at the UL-94 test. Moreover, the peak heat release rate (pHRR) value of PVA-DiDOPO4 reduces to 452.26 (W/g) from 482.88 (W/g) of pure PVA. In addition, PVA/DiDOPO/MXene composite aerogel has improved thermal decomposition properties such as the maximum decomposition temperature (T<sub>max1</sub>) of the PVA-DiDOPO4 sample attains 319.92 °C from pure PVA of 302.90 °C. The design strategy of PVA combined 2D MXene nanosheet and DOPO derivatives construct oriented porous composite aerogel paves the way for the fabrication and customization of ultralight flame-retardant polymer composites, which can be expected to be applied in construction and reduce fire risk.</p></div>","PeriodicalId":406,"journal":{"name":"Polymer Degradation and Stability","volume":"229 ","pages":"Article 111006"},"PeriodicalIF":6.3,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142238378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A new strategy for constructing ZIF-67@PBA core-shell 3D cross-heterostructures for improving fire safety of TPU at ultra-low addition amount 构建 ZIF-67@PBA 核壳三维交叉异质结构的新策略,以超低添加量提高热塑性聚氨酯的防火安全性
IF 6.3 2区 化学
Polymer Degradation and Stability Pub Date : 2024-09-11 DOI: 10.1016/j.polymdegradstab.2024.111004
Yiwei Geng , Rongjia Li , Ran Song , Zexuan Zhao , Xinliang Liu , Lei Liu , Lei Yang , Baojun Li , Xilei Chen , Chuanmei Jiao
{"title":"A new strategy for constructing ZIF-67@PBA core-shell 3D cross-heterostructures for improving fire safety of TPU at ultra-low addition amount","authors":"Yiwei Geng ,&nbsp;Rongjia Li ,&nbsp;Ran Song ,&nbsp;Zexuan Zhao ,&nbsp;Xinliang Liu ,&nbsp;Lei Liu ,&nbsp;Lei Yang ,&nbsp;Baojun Li ,&nbsp;Xilei Chen ,&nbsp;Chuanmei Jiao","doi":"10.1016/j.polymdegradstab.2024.111004","DOIUrl":"10.1016/j.polymdegradstab.2024.111004","url":null,"abstract":"<div><p>Thermoplastic polyurethane (TPU) has an extensive application in many different industries. However, serious fire hazards and smoke toxicity have been the main reason limiting its wide application. Therefore, it is necessary and urgent to perform flame retardant and smoke suppression treatment for TPU. In recent years, metal-organic framework compounds (MOFs) have very promising application prospects in the fields of flame-retardant polymer composites. However, there is a problem of low flame-retardant efficiency for the original MOFs alone in polymer composites. It is reported the multi-level and multi-structured flame-retardant system has better flame-retardant efficiency than the traditional structures. So, the dual MOF core-shell heterostructure may have more effective heat reduction and smoke suppression than any single component. In this paper, a core-shell 3D cross-heterostructures nanohybrid (ZIF-67H@PBA) was prepared using ZIF-67H as the host MOF and Prussian blue nanocubes (PBA) as the guest MOF. It has been found that TPU/ZIF-67H@PBA composites with ultra-low additions have excellent fire safety. Compared with those of pure TPU, the peak heat release rate (PHRR), total smoke release (TSP), and smoke factor (SF) of the samples with 0.5wt% ZIF-67H@PBA were reduced by 33.6 %, 47 %, and 61 %, respectively. At the same time, a cone calorimeter (CCT), a homemade soot sampling device and a gas chromatography-mass spectrometry (GC–MS) coupling with each other were constructed and used to demonstrate the most realistic effects of flame retardants in terms of smoke suppression and toxicity reduction. This work provides a new strategy to design TPU flame retardants.</p></div>","PeriodicalId":406,"journal":{"name":"Polymer Degradation and Stability","volume":"229 ","pages":"Article 111004"},"PeriodicalIF":6.3,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142238376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Isosorbide as a building block for Poly(butylene adipate-co-terephthalate)-based copolyesters with enhanced mechanical properties and tunable biodegradability 异山梨醇作为聚(己二酸丁二醇酯-对苯二甲酸丁二醇酯)基共聚聚酯的结构单元,具有更强的机械性能和可调生物降解性
IF 6.3 2区 化学
Polymer Degradation and Stability Pub Date : 2024-09-11 DOI: 10.1016/j.polymdegradstab.2024.111005
Yiming Liu , Jie Zhou , Haoyu Yang , Xiaoqi Zhang , Jilin Liu , Hao Liu , Wentao Liu
{"title":"Isosorbide as a building block for Poly(butylene adipate-co-terephthalate)-based copolyesters with enhanced mechanical properties and tunable biodegradability","authors":"Yiming Liu ,&nbsp;Jie Zhou ,&nbsp;Haoyu Yang ,&nbsp;Xiaoqi Zhang ,&nbsp;Jilin Liu ,&nbsp;Hao Liu ,&nbsp;Wentao Liu","doi":"10.1016/j.polymdegradstab.2024.111005","DOIUrl":"10.1016/j.polymdegradstab.2024.111005","url":null,"abstract":"<div><p>Developing bio-based copolyesters with excellent mechanical properties, controlled degradation, and easy industrial production would significantly promote adopting disposable green products and advancing a circular economy. A series of poly(butylene adipate/terephthalate-isosorbide) (PBIAT) were successfully synthesized by introducing varying amounts of biologically derived isosorbide (IS) as the modifying monomer into cost-effective poly(butylene adipate-co-terephthalate) (PBAT). It was demonstrated that IS effectively enhances the rigidity of molecular chains, thereby the glass transition temperature of PBIAT increased almost linearly with IS content, while the tensile strength, elongation at break, and tensile toughness improved by up to 85 %, 69 %, and 42 %, respectively, compared to neat PBAT. Moreover, studies on the degradability of the copolyester demonstrated that PBIAT exhibits controlled degradation capability. The stability of PBIAT in a neutral solution is consistent with that of PBAT, whereas the degradation rate of PBIAT increased by up to 70 % in the enzyme solution. This work provides insights into the design of isosorbide-modified degradable polyesters for regulating the mechanical properties and degradation rate.</p></div>","PeriodicalId":406,"journal":{"name":"Polymer Degradation and Stability","volume":"229 ","pages":"Article 111005"},"PeriodicalIF":6.3,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142238379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Covalent immobilization of an enzyme on a layered silicate to catalyze the self-degradation of PCL 在层状硅酸盐上共价固定酶以催化 PCL 的自我降解
IF 6.3 2区 化学
Polymer Degradation and Stability Pub Date : 2024-09-10 DOI: 10.1016/j.polymdegradstab.2024.111003
Nóra Hegyesi , Diána Balogh-Weiser , Béla Pukánszky
{"title":"Covalent immobilization of an enzyme on a layered silicate to catalyze the self-degradation of PCL","authors":"Nóra Hegyesi ,&nbsp;Diána Balogh-Weiser ,&nbsp;Béla Pukánszky","doi":"10.1016/j.polymdegradstab.2024.111003","DOIUrl":"10.1016/j.polymdegradstab.2024.111003","url":null,"abstract":"<div><p>A lipase from <em>Burkholderia cepacia</em> was covalently linked to the surface of Laponite® layered silicate after its activation with glycidoxy moieties on two different routes. The modified silicate was embedded into poly-ε-caprolacton (PCL) for the preparation of self-degradable biopolymers. The activated silicate was characterized by thermogravimetry (TGA) and infrared spectroscopy (FTIR), the location of the linker among the silicate layers was determined by X-ray diffraction (XRD). The activity of the immobilized enzyme was tested in two model reactions, by transesterification in organic medium and hydrolysis in aqueous buffer. The immobilized enzyme was homogenized with the polymer and then films were compression molded at 70 °C. TGA and FTIR measurements verified the successful activation of the silicate but the number of available epoxy groups were limited on the surface. These functional groups linked enzyme molecules to the silicate surface. The enzyme retained its activity even after immobilization and had similar or better catalytic performance than the neat enzyme in both transesterification and hydrolysis. The supported enzyme degraded PCL efficiently, the rate of degradation depended on the type of the linker molecules and on the activated enzyme content of the polymer. The covalently linked enzyme catalyzes the degradation of a solid polymer matrix thus allowing the preparation of self-degradable composites with controlled lifetime and helping the reduction of environmental pollution.</p></div>","PeriodicalId":406,"journal":{"name":"Polymer Degradation and Stability","volume":"229 ","pages":"Article 111003"},"PeriodicalIF":6.3,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0141391024003471/pdfft?md5=da1723cee73fcceac1074aa0e511126e&pid=1-s2.0-S0141391024003471-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142238377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The development of a new type of sustainable flame retarded polyamide 6 (PA6)-based composites, modified with biocarbon/phosphorus flame retardant/basalt fiber system (BC/OP/BF). The evaluation of the material performance and flammability 开发一种新型可持续阻燃聚酰胺 6(PA6)基复合材料,并用生物碳/磷阻燃剂/盐纤维体系(BC/OP/BF)进行改性。材料性能和可燃性评估
IF 6.3 2区 化学
Polymer Degradation and Stability Pub Date : 2024-09-06 DOI: 10.1016/j.polymdegradstab.2024.111002
Jacek Andrzejewski , Łukasz Kemnitz , Kamila Sałasińska
{"title":"The development of a new type of sustainable flame retarded polyamide 6 (PA6)-based composites, modified with biocarbon/phosphorus flame retardant/basalt fiber system (BC/OP/BF). The evaluation of the material performance and flammability","authors":"Jacek Andrzejewski ,&nbsp;Łukasz Kemnitz ,&nbsp;Kamila Sałasińska","doi":"10.1016/j.polymdegradstab.2024.111002","DOIUrl":"10.1016/j.polymdegradstab.2024.111002","url":null,"abstract":"<div><p>The presented study was focused on the development of a sustainable type of composite characterized by improved flame retardance. Polyamide 6 (PA6) was modified with the addition of biocarbon (BC) and organic phosphorous flame retardant (OP). The initial part of the study was aimed at the evaluation of the OP:BC system efficiency, while the final part of the research focuses on the preparation of composites with basalt fibers (BF) reinforcement. Composite materials were modified using 20% of the OP:BC mixture at different ratios. The reinforced samples were modified with an additional 20% of the BF filler. Prepared samples were subjected to detailed analysis, mechanical properties evaluation, thermal analysis, microscopic observations, and burning tests. The results indicate that the application of the developed concept led to a large decrease in flammability for most of the investigated PA6-based materials; however, the most interesting results refer to materials containing a balanced OP:BC system.</p></div>","PeriodicalId":406,"journal":{"name":"Polymer Degradation and Stability","volume":"229 ","pages":"Article 111002"},"PeriodicalIF":6.3,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S014139102400346X/pdfft?md5=06b76b7e45225bc976ac986a2d0b3776&pid=1-s2.0-S014139102400346X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142164698","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Degradation phenomenon of compostable poly(lactic acid) films induced by pure halogenated liquid chemicals and mixtures with water 纯卤化液体化学品和水混合物诱导的可堆肥聚(乳酸)薄膜降解现象
IF 6.3 2区 化学
Polymer Degradation and Stability Pub Date : 2024-09-04 DOI: 10.1016/j.polymdegradstab.2024.110997
Mingyin Hsiao, Kazukiyo Nagai
{"title":"Degradation phenomenon of compostable poly(lactic acid) films induced by pure halogenated liquid chemicals and mixtures with water","authors":"Mingyin Hsiao,&nbsp;Kazukiyo Nagai","doi":"10.1016/j.polymdegradstab.2024.110997","DOIUrl":"10.1016/j.polymdegradstab.2024.110997","url":null,"abstract":"<div><p>A circular economy requires that plastic packaging should be recyclable or compostable as well as reusable. Compostable/biodegradable poly(lactic acid) (PLA) is an alternative to conventional packaging materials for films, bags, and containers. Packaging is not only for food and beverages but also for medicine, agricultural chemicals, industrial chemicals, and waste solvents such as chlorinated solvents, which sometimes contain water. This study determined that PLA films were completely soluble in dichloromethane and chloroform, insoluble but strongly swollen in trans-1,2-dichlorocycrohexane, o-dichlorobenzene, and carbon tetrachloride, and insoluble with retained film shape in tetrachloroethylene (TCE), 1,2,4-trichlorobenzene (1,2,4-TCB), and 1-bromonaphthalene (1-BN). The equilibrium mass uptake values of pure insoluble solvents in PLA films were 0.977 ± 0.219 wt% for TCE, 1.716 ± 0.631 wt% for 1,2,4-TCB, and 3.351 ± 1.936 wt% for 1-BN. After sorption of the three insoluble pure solvents, the α’-type crystals of PLA films changed to α-type crystals. This phenomenon was based on the molecular size and electrostatic potential value of the solvents. When insoluble solvents were mixed with water, the water-in-oil mixture enhanced the mass uptake for TCE and 1,2,4-TCB but reduced it for 1-BN. The oil-in-water mixture distinctly reduced the solubility for all solvents. The α-type crystal structure was stable in TCE and 1-BN. If an industrially appropriate method of α-type crystal structure formation could be realized selectively, then PLA could be used as packaging materials for films, bags, and containers for these solvents without any further modification.</p></div>","PeriodicalId":406,"journal":{"name":"Polymer Degradation and Stability","volume":"229 ","pages":"Article 110997"},"PeriodicalIF":6.3,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0141391024003410/pdfft?md5=34293896cd0fbc56ffbd24f32cc21946&pid=1-s2.0-S0141391024003410-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142151511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
N2O deconstruction of polycyclooctene to generate carbonyl-functionalized macromonomers N2O 解构聚环辛烯生成羰基功能化大单体
IF 6.3 2区 化学
Polymer Degradation and Stability Pub Date : 2024-09-03 DOI: 10.1016/j.polymdegradstab.2024.110987
Ikechukwu Martin Ogbu , Chien-Hua Tu , Eli Fastow , Zachary R. Hinton , Karen I. Winey , Marisa C. Kozlowski
{"title":"N2O deconstruction of polycyclooctene to generate carbonyl-functionalized macromonomers","authors":"Ikechukwu Martin Ogbu ,&nbsp;Chien-Hua Tu ,&nbsp;Eli Fastow ,&nbsp;Zachary R. Hinton ,&nbsp;Karen I. Winey ,&nbsp;Marisa C. Kozlowski","doi":"10.1016/j.polymdegradstab.2024.110987","DOIUrl":"10.1016/j.polymdegradstab.2024.110987","url":null,"abstract":"<div><p>Deconstruction of polyolefins into functionalized macromonomers presents a compelling strategy for polyolefin upcycling by creating macromonomers through dehydrogenation/depolymerization. We show that nitrous oxide (N<sub>2</sub>O), a greenhouse gas waste product from the production of nylon, mediates the deconstruction of polycyclooctene (PCOE) and generates carbonyl-functionalized macromonomers. Carbonyl incorporation and macromonomer molar mass were well controlled by reaction time, and subsequent hydrogenation readily removed residual carbon-carbon double bonds. We also demonstrated that the reaction could progress efficiently with substrates of moderate levels of unsaturation, closely mimicking partially dehydrogenated polyethylene. Such carbonyl-functionalized macromonomers could serve as feedstock for preparing vitrimers and other functional polymers.</p></div>","PeriodicalId":406,"journal":{"name":"Polymer Degradation and Stability","volume":"229 ","pages":"Article 110987"},"PeriodicalIF":6.3,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142238427","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of N-heterocyclic carbenes-Pt catalytic system and crosslinking networks on the pyrolytic behavior of liquid silicone rubber N-heterocyclic carbenes-Pt 催化体系和交联网络对液体硅橡胶热解行为的影响
IF 6.3 2区 化学
Polymer Degradation and Stability Pub Date : 2024-09-01 DOI: 10.1016/j.polymdegradstab.2024.110986
Dingsong Wang , Wanyan Li , Jingjing Qin , Youwei Zhu , Liyan Liang , Changan Xu
{"title":"Effect of N-heterocyclic carbenes-Pt catalytic system and crosslinking networks on the pyrolytic behavior of liquid silicone rubber","authors":"Dingsong Wang ,&nbsp;Wanyan Li ,&nbsp;Jingjing Qin ,&nbsp;Youwei Zhu ,&nbsp;Liyan Liang ,&nbsp;Changan Xu","doi":"10.1016/j.polymdegradstab.2024.110986","DOIUrl":"10.1016/j.polymdegradstab.2024.110986","url":null,"abstract":"<div><p>Liquid silicone rubber (LSR) exhibits excellent thermal stability and has been selected for use in a variety of applications where thermal stability, chemical resistance and fire-retardant are required. The enhancement of the organic-to-inorganic conversion of LSR to improve their flame-retardant properties represents a significant area of research. The thermal stability of the platinum catalysts and the crosslinked network structure of the LSR have a considerable influence on the organic-to-organic conversion behavior of LSR. The present study demonstrates the efficacy of N-heterocyclic carbene (NHC) ligand-modified Karstedt's catalysts as catalysts for the curing of LSR by hydrosilylation at room temperature and for the organic-to-inorganic conversion of LSR at elevated temperatures. The catalyst was employed in the preparation of three LSRs with varying network structures, utilizing four polysiloxanes with differing degrees of functionality. The pyrolytic behavior and organic-to-organic conversion rate of these LSRs were investigated using a thermogravimetric analyzer (TG) coupled with a Fourier transform infrared spectrometer (FTIR). The findings indicated that LSRs with the highest crosslink density exhibited the highest organic-to-inorganic conversion rate; however, they demonstrated the lowest fire-resistance. The anomalous behavior has been subjected to further analysis with respect to the mechanical properties of the LSRs and the characteristics of their network structure. LSR coatings with enhanced hardness and fire-resistance are then produced by combining the advantageous properties of both LSRs in a layer-by-layer (LBL) assembly.</p></div>","PeriodicalId":406,"journal":{"name":"Polymer Degradation and Stability","volume":"229 ","pages":"Article 110986"},"PeriodicalIF":6.3,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142151510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Long-term degradation study of Polytetrafluoroethylene in a low temperature oxygen plasma 聚四氟乙烯在低温氧等离子体中的长期降解研究
IF 6.3 2区 化学
Polymer Degradation and Stability Pub Date : 2024-08-31 DOI: 10.1016/j.polymdegradstab.2024.110989
Tobias Wagner, Marcus Rohnke, Jürgen Janek
{"title":"Long-term degradation study of Polytetrafluoroethylene in a low temperature oxygen plasma","authors":"Tobias Wagner,&nbsp;Marcus Rohnke,&nbsp;Jürgen Janek","doi":"10.1016/j.polymdegradstab.2024.110989","DOIUrl":"10.1016/j.polymdegradstab.2024.110989","url":null,"abstract":"<div><p>Atomic oxygen (AO) is the most common gas species in the Low-Earth-Orbit (LEO) and responsible for material degradation of the outer shell of spacecrafts within this space region. Due to their similar properties, low temperature oxygen plasmas are suited for material degradation studies taking place on earth instead of quite expensive space studies. Here we focus on the long-term degradation of Polytetrafluoroethylene (PTFE), which is often employed on the outside of spacecrafts. Up to date, there is no complete understanding of the degradation process on molecular level, which is necessary for materials improvement and new materials development.</p><p>For the degradation studies, a self-constructed capacitively driven 13.56 MHz RF reactor was used to generate an oxygen plasma for the simulation of LEO conditions. PTFE was characterised in the pristine state and after AO treatment at different times by ToF-SIMS, XPS and SEM. During plasma treatment, the samples show a linear mass loss behaviour. ToF-SIMS surface analysis reveal mass fragments which show a clear chemical reaction of oxygen species with PTFE. The presence of these molecular indicators was verified by XPS, where additional carbon species were found after plasma treatment. SEM micrographs showed an inhomogeneous degradation on the surface in the first hours similar to actual LEO exposure. For a complete understanding of the degradation progress, operando mass spectrometric studies of the plasma composition were carried out to detect volatile degradation products.</p><p>In summary, a steady degradation has been observed that leads to constant mass loss, defluorination, chain shortening and insertion of oxygen into the polymer.</p></div>","PeriodicalId":406,"journal":{"name":"Polymer Degradation and Stability","volume":"229 ","pages":"Article 110989"},"PeriodicalIF":6.3,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0141391024003331/pdfft?md5=fa233b553d05923a64e407d8ad4e5cb2&pid=1-s2.0-S0141391024003331-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142151501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
From renewable biomass to bio-based epoxy monomers and bio-based epoxy curing agents: Synthesis and performance 从可再生生物质到生物基环氧单体和生物基环氧固化剂:合成与性能
IF 6.3 2区 化学
Polymer Degradation and Stability Pub Date : 2024-08-31 DOI: 10.1016/j.polymdegradstab.2024.110988
Yuan Zhang, Xuemei Liu, Mengting Wan, Yanjie Zhu, Kan Zhang
{"title":"From renewable biomass to bio-based epoxy monomers and bio-based epoxy curing agents: Synthesis and performance","authors":"Yuan Zhang,&nbsp;Xuemei Liu,&nbsp;Mengting Wan,&nbsp;Yanjie Zhu,&nbsp;Kan Zhang","doi":"10.1016/j.polymdegradstab.2024.110988","DOIUrl":"10.1016/j.polymdegradstab.2024.110988","url":null,"abstract":"<div><p>In recent years, the excessive consumption of fossil energy leads to the depletion of petroleum resources and environmental pollution. Therefore, biomass which is renewable and easy availability has been exploited in the past few decades to replace petroleum resources and to design bio-based epoxy resins. Through molecular design and synthesis, alternative bio-based products with close properties to petroleum-based epoxy resins were exploited, and then bio-based epoxy resins with excellent and unique properties were developed. This present review mainly summarizes the synthetic strategies of bio-based epoxy resins through the chemical modification of various bio-based precursors, such as eugenol, vanillin, cardanol, furan, plant oil, and so forth. And then their inherent and superior properties relating to the unique structures and potential applications are discussed. Finally, the challenges and opportunities in the development of sustainable epoxy thermosets from renewable biomass are presented. It is hoped that this review will provide a framework for further design of bio-based epoxy thermosetting materials.</p></div>","PeriodicalId":406,"journal":{"name":"Polymer Degradation and Stability","volume":"229 ","pages":"Article 110988"},"PeriodicalIF":6.3,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142136626","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信