{"title":"Impact of Body Bias Based Leakage Power Reduction on Soft Error Rate","authors":"Warin Sootkaneung, K. Saluja","doi":"10.1109/VLSID.2012.49","DOIUrl":"https://doi.org/10.1109/VLSID.2012.49","url":null,"abstract":"As device geometries shrink to nanometers, increasing leakage current coupled with particle induced soft errors is exasperating the circuit reliability issues. In this paper, we first establish that independent solutions to these two problems can not lead to a good final solution. A more thoughtful and integrated design methodology is required to reconcile these two challenging issues. Next, we investigate the dependency of soft error rate on the body bias based leakage reduction method and introduce a novel body bias-dependent soft error model. We propose an optimization based and a heuristic driven approach to reduce leakage while satisfying the soft error rate limit. Our methods provide appropriate body bias configurations that lead to near-optimal total mean time to failure improvement of a circuit.","PeriodicalId":405021,"journal":{"name":"2012 25th International Conference on VLSI Design","volume":"100 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2012-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122973495","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Self-Induced Supply Noise Reduction Technique in GBPS Rate Transmitters","authors":"Nitin Gupta, Tapas Nandy, P. Bala","doi":"10.1109/VLSID.2012.52","DOIUrl":"https://doi.org/10.1109/VLSID.2012.52","url":null,"abstract":"In high speed link transmitters, one major contributor of jitter is the data-dependant switching of the transmitters. Such switching leads to oscillations in the supply R-L-C network. This paper presents an area-efficient way to reduce this supply noise by shifting the switching beyond the resonance frequency of the supply network, irrespective of the data-pattern. This scheme is implemented in HDMI transmitter in 65nm technology.","PeriodicalId":405021,"journal":{"name":"2012 25th International Conference on VLSI Design","volume":"4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2012-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130347488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Rapid Methodology for Multi-mode Communication Circuit Generation","authors":"L. Tang, Jorgen Peddersen, S. Parameswaran","doi":"10.1109/VLSID.2012.71","DOIUrl":"https://doi.org/10.1109/VLSID.2012.71","url":null,"abstract":"The need to integrate multiple wireless communication protocols into a single low-cost, low power hardware platform is prompted by the increasing number of emerging communication protocols and applications. This paper presents an efficient methodology for integrating multiple wireless protocols in an ASIC which minimizes resource occupation. A hierarchical data path merging algorithm is developed to find common shareable components in two different communication circuits. The data path merging approach will build a combined generic circuit with inserted multiplexers (MUXes) which can provide the same functionality of each individual circuit. The proposed method is orders of magnitude faster (well over 1000 times faster for realistic circuits) than the existing data path merging algorithm (with an overhead of 3% additional area) and can switch communication protocols on the fly (i.e. it can switch between protocols in a single clock cycle), which is a desirable feature for seemingly simultaneous multi-mode wireless communication. Wireless LAN (WLAN) 802.11a, WLAN802.11b and Ultra Wide Band (UWB) transmission circuits are merged to prove the efficacy of our proposal.","PeriodicalId":405021,"journal":{"name":"2012 25th International Conference on VLSI Design","volume":"27 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2012-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122058167","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Formal Verification of Galois Field Multipliers Using Computer Algebra Techniques","authors":"Jinpeng Lv, P. Kalla","doi":"10.1109/VLSID.2012.102","DOIUrl":"https://doi.org/10.1109/VLSID.2012.102","url":null,"abstract":"Finite (Galois) field arithmetic finds applications in cryptography, error correction codes, signal processing, etc. Multiplication usually lies at the core of all Galois field computations and is a high-complexity operation. This paper addresses the problem of formal verification of hardware implementations of modulo-multipliers over Galois fields of the type F2k, using a computer-algebra/algebraic-geometry based approach. The multiplier circuit is modeled as a polynomial system in F2k[x1,x2,⋯,xd] and the verification test is formulated as a Nullstellensatz proof over the finite field. A Grobner basis engine is used as the underlying computational framework. The efficiency of Grobner basis computations depends heavily upon the variable (and term) ordering used to represent and manipulate the polynomials. We present a variable (and term) ordering heuristic that significantly improves the efficiency of Grobner basis engines. Using our approach, we can verify the correctness of up to 96-bit multipliers, whereas contemporary BDDs/SAT/SMT-solver based methods are infeasible.","PeriodicalId":405021,"journal":{"name":"2012 25th International Conference on VLSI Design","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2012-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129184098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Implications of Halo Implant Shadowing and Backscattering from Mask Layer Edges on Device Leakage Current in 65nm SRAM","authors":"H. C. Srinivasaiah","doi":"10.1109/VLSID.2012.106","DOIUrl":"https://doi.org/10.1109/VLSID.2012.106","url":null,"abstract":"Effect of shadowing and/or backscattering of halo implant species from halo implant mask layer on leakage current of NMOS driver transistor of a 65nm SRAM cell is studied. The halo implant mask layer thickness has been varied from 100nm to 3000nm in steps, in response to this variation, leakage behavior of this NMOS transistor is observed. The leakage current of this transistor is shown to be a strong function of halo implant mask layer thickness with implant window width W=0.27mm. The poly gate is located approximately in the middle of this implant window. The leakage current is seen to increase monotonically by more than an order of magnitude with the increase in thickness till 500nm. When this thickness is increased beyond 500nm, the leakage current variation fits approximately into a damped oscillatory curve whose period is seen to be proportional to the width W of the halo implant window. The leakage current observed is 22nA for this NMOS device (with gate width Wn=120nm) at 500nm of halo implant mask layer thickness. Further when the halo implant window width W is increased beyond 0.27mm with the halo mask layer thickness fixed at 500nm, the leakage attained a minimum value of 0.54nA. All the leakage currents that are observed are in saturation region at cell Vdd=1.2V.","PeriodicalId":405021,"journal":{"name":"2012 25th International Conference on VLSI Design","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2012-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123823832","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J. W. Wells, Jayaram Natarajan, A. Chatterjee, I. Barlas
{"title":"Real-Time, Content Aware Camera -- Algorithm -- Hardware Co-Adaptation for Minimal Power Video Encoding","authors":"J. W. Wells, Jayaram Natarajan, A. Chatterjee, I. Barlas","doi":"10.1109/VLSID.2012.78","DOIUrl":"https://doi.org/10.1109/VLSID.2012.78","url":null,"abstract":"In this paper, a content aware, low power video encoder design is presented in which the algorithms and hardware are co-optimized to adapt concurrently to video content in real-time. Natural image statistical models are used to form spatiotemporal predictions about the content of future frames. A key innovation in this work is that that the predictions are used as parameters in a feedback control loop to intelligently down sample (change the resolution of the frame image across different parts of the image) the video encoder input immediately at the camera, thus reducing the amount of work required by the encoder per frame. A multiresolution frame representation is used to produce regular data structures which allow for efficient hardware design. The hardware is co-optimized with the algorithm to reduce power based on the reduced input size resulting from the algorithm. The design also allows for selectable, graceful degradation of video quality while reducing power consumption.","PeriodicalId":405021,"journal":{"name":"2012 25th International Conference on VLSI Design","volume":"56 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2012-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115192747","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Jain, Maheedhar Jalasutram, S. Vooka, Prasun Nair, Neeraj Pradhan
{"title":"At-speed Testing of Asynchronous Reset De-assertion Faults","authors":"A. Jain, Maheedhar Jalasutram, S. Vooka, Prasun Nair, Neeraj Pradhan","doi":"10.1109/VLSID.2012.97","DOIUrl":"https://doi.org/10.1109/VLSID.2012.97","url":null,"abstract":"In sub-threshold technology nodes, device failure due to timing related defects (setup & hold timing) is on rise due to extreme process variability and increasing use of voltage scaling techniques for achieving required performance. High coverage using stuck-at fault patterns, which can effectively screen static defects is no longer sufficient to control DPPM (Defective parts per million). High test coverage of timing defects that is induced by process variation is required for controlling DPPM. Lot of work has been done to find the ways to increase the delay test coverage of industrial circuits including the various methods to cover inter-domain clock faults but very little or no work is done on the ways to effectively cover the asynchronous reset paths to the memory registers for timing defects. In this paper we propose a novel methodology that allows us to effectively detect the failures induced by timing defects on asynchronous reset path of the registers. This problem is further complicated by the fact that commercially available ATPG tools are not capable of generating test patterns due to modeling limitations. Results from 45nm industrial multi-million gates design is presented to illustrate the effectiveness of the proposed methodology.","PeriodicalId":405021,"journal":{"name":"2012 25th International Conference on VLSI Design","volume":"183 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2012-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124806762","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mahima Arrawatia, Varish Diddi, H. Kochar, M. Baghini, G. Kumar
{"title":"An Integrated CMOS RF Energy Harvester with Differential Microstrip Antenna and On-Chip Charger","authors":"Mahima Arrawatia, Varish Diddi, H. Kochar, M. Baghini, G. Kumar","doi":"10.1109/VLSID.2012.72","DOIUrl":"https://doi.org/10.1109/VLSID.2012.72","url":null,"abstract":"This paper presents an energy harvesting system which extracts energy from radio frequency radiation for battery charging applications. It comprises of a new differential center tapped Micro strip antenna, off-chip matching circuit, on-chip novel CMOS rectifier and control circuitry in 180nm CMOS technology. For on-chip modules, thick oxide devices have been used so as to meet the charging requirements of the target batteries. The designed battery charging module charges either of 250 Ah and 10 Ah batteries according to the selected battery and available input power. The 250 Ah battery is charged at input power of 2dBm and 10 Ah battery is charged at input power of -6.5dBm. The fabricated antenna has a gain of 8.3dB and a VSWR less than 2 in the bandwidth from 844 to 970MHz. An efficient Periodic Steady State(PSS)-based power matching technique is also presented which improves the system efficiency. For 0dBm input power at 950 MHz to the antenna the proposed technique leads to 55.2% efficiency of RF to DC converter system. In addition to the integrated design a discrete rectifier using high frequency Schottky diodes and differential micro strip antenna at the input are fabricated. The discrete system uses the proposed matching technique and exhibits efficiency of 40% for-11dBm received power by the antenna.","PeriodicalId":405021,"journal":{"name":"2012 25th International Conference on VLSI Design","volume":"19 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2012-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125092938","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Set-Cover Heuristics for Two-Level Logic Minimization","authors":"Ankit Kagliwal, S. Balachandran","doi":"10.1109/VLSID.2012.70","DOIUrl":"https://doi.org/10.1109/VLSID.2012.70","url":null,"abstract":"Given a Boolean function, the Unate-Covering Problem (UCP) is NP-hard. This problem can be modeled as a set cover problem where minterms are the elements and implicants form the sets. Traditional solutions in logic synthesis use set cover algorithms that are oblivious to the special semantic of the elements and sets. We propose three new heuristics for the set-cover problem which are aware of the relationship between implicants and minterms. We show that the proposed heuristics are effective for breaking ties when a cyclic core is obtained. We evaluate the heuristics on a set of hard instances from BHOSLIB benchmark suite. We also replace ESPRESSO's set cover algorithm using these heuristics and compare the logic synthesis results. We further map the minimized Boolean equations using ABC's technology mapping tool using 2-input NAND gates and 4-input Lookup Tables (LUTs).","PeriodicalId":405021,"journal":{"name":"2012 25th International Conference on VLSI Design","volume":"24 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2012-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116961459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Fast Equation Free Iterative Approach to Analog Circuit Sizing","authors":"S. Maji, P. Mandal","doi":"10.1109/VLSID.2012.99","DOIUrl":"https://doi.org/10.1109/VLSID.2012.99","url":null,"abstract":"A fast equation free iterative approach for sizing of analog circuit is proposed. Equation based sizing approach has been popular as it removes time consuming simulation effort. If equations are cast in posynomial inequality format, a special optimization technique called geometric programming(GP) can be deployed. The advantage of formulating the problem in GP form is that, it ensures global optimality and can return the final design point instantly even in the presence of hundreds of equation and thousands of variable. But main limitation comes in deriving performance equations in posynomial inequality format. In this context, we develop one novel methodology for fast sizing of analog circuit. This method does not require any such performance expressions. It is based on the meaningful presentation of only device constraints. Infeasibility is handled iteratively making suitable changes on those constraints. Due to the simplicity of formulation, fully automated flow is achieved.","PeriodicalId":405021,"journal":{"name":"2012 25th International Conference on VLSI Design","volume":"18 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2012-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116541400","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}