光电工程最新文献

筛选
英文 中文
Link structure of underwater wireless optical communication and progress on performance optimization 水下无线光通信链路结构及性能优化研究进展
Guangdian Gongcheng/Opto-Electronic Engineering Pub Date : 2020-09-17 DOI: 10.12086/OEE.2020.190734
Zhang Yufan, Li Xin, Lv Weichao, Chen Jiawang, Zheng Minhui, Xu Jing
{"title":"Link structure of underwater wireless optical communication and progress on performance optimization","authors":"Zhang Yufan, Li Xin, Lv Weichao, Chen Jiawang, Zheng Minhui, Xu Jing","doi":"10.12086/OEE.2020.190734","DOIUrl":"https://doi.org/10.12086/OEE.2020.190734","url":null,"abstract":"Underwater wireless optical communication (UWOC) can provide a high-speed and flexible communication link for underwater platforms. This paper introduces the basic structure of a UWOC link and points out the optimization schemes for a UWOC system. Absorption, scattering, and turbulence will affect the performance of a UWOC system. A comprehensive study of channel characteristics can guide the design of transmitters, receivers, and related signal processing technologies. The performance of UWOC can also be optimized by multiplexing technologies, single-photon detection technologies, and alignment systems. A comprehensive test platform could provide a necessary test environment for further sea trials and the practical applications of UWOC. The paper is expected to serve as a guideline for researchers related to UWOC.","PeriodicalId":39552,"journal":{"name":"Guangdian Gongcheng/Opto-Electronic Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75662100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
The consistent of laser pointing and theodolite tracking 激光指向与经纬仪跟踪的一致性
Guangdian Gongcheng/Opto-Electronic Engineering Pub Date : 2020-09-17 DOI: 10.12086/OEE.2020.190438
Jia Wenwu, Zhang Sanxi, Lei Tao
{"title":"The consistent of laser pointing and theodolite tracking","authors":"Jia Wenwu, Zhang Sanxi, Lei Tao","doi":"10.12086/OEE.2020.190438","DOIUrl":"https://doi.org/10.12086/OEE.2020.190438","url":null,"abstract":"The distance between the laser optical axis and the tracking optical axis of the theodolite (axis shift) and the parallelism error of the optical axis cause the tracking position of the theodolite to be inconsistent with the laser pointing position.The analysis of the influence of off-axis and parallelism errors shows that a large amount of shift and parallelism errors will lead to inconsistencies between the laser pointing and the theodolite tracking pointing, which in turn leads to an increase in the blind zone of the laser ranging, a decrease in the operating distance and the accuracy of target positioning. A dynamic correction method for laser pointing based on bias tracking is proposed. By keeping the target always at the center of the laser beam and keeping the laser ranging position consistent with the theodolite tracking and locking position, it effectively solves the effect of laser edge energy drop on the operating distance. For a certain type of theodolite, the blind spot of the target can be reduced from 1 km to 82 m. At the same time, in view of the problem that the bias tracking algorithm needs the initial distance of the target to start the bias tracking, a one-dimensional search method for the target with unknown initial distance is proposed, which greatly improves the search efficiency of the target with unknown initial distance. The method in this paper solves the problem of the consistency between the tracking position of the theodolite and the pointing position of the laser, and greatly reduces the limitation on the shift and parallelism of the laser optical axis and the theodolite tracking optical axis","PeriodicalId":39552,"journal":{"name":"Guangdian Gongcheng/Opto-Electronic Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76282130","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Optimizing the location of multiple laser guide stars in ground layer adaptive optical systems 地面层自适应光学系统中多颗激光导星位置的优化
Guangdian Gongcheng/Opto-Electronic Engineering Pub Date : 2020-09-17 DOI: 10.12086/OEE.2020.190515
Cai-Lian Li, Jia Peng, Dongmei Cai
{"title":"Optimizing the location of multiple laser guide stars in ground layer adaptive optical systems","authors":"Cai-Lian Li, Jia Peng, Dongmei Cai","doi":"10.12086/OEE.2020.190515","DOIUrl":"https://doi.org/10.12086/OEE.2020.190515","url":null,"abstract":"At present, the ground layer adaptive optical systems are using multiple laser guide stars arranged in regular polygons as reference targets to measure the effects of atmospheric turbulence. Obtaining the optimal position of laser guide stars becomes an interesting problem to analyze. This paper proposes a method to obtain the optimal position of laser guide stars by using a genetic algorithm as the optimization algorithm and a simplified geometry model of the ground layer adaptive optic system as the evaluation function. Furthermore, multi-process, Numba library, and multi-thread techniques methods are used to accelerate calculation speed. Based on these methods, real atmospheric turbulence profiles are used to analyze the relationship between the optimal position of laser guide stars with different numbers and the different atmospheric turbulence profiles from the same site, through an example of a ground layer adaptive optics system with 14 arcmin field of view. The results show that the optimal position of laser guide stars in the same site is almost the same and their statistically optimal positions are all regular polygon. Besides, we also find that the spatial resolution of turbulence profiles has strong effects to positions of laser guide stars, showing that the more equivalent layers in the measurement results, the closer the position distribution of laser guide stars is to the regular polygon.","PeriodicalId":39552,"journal":{"name":"Guangdian Gongcheng/Opto-Electronic Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84058619","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Research on laser frequency locking technology based on temperature and PZT control 基于温度和压电陶瓷控制的激光锁频技术研究
Guangdian Gongcheng/Opto-Electronic Engineering Pub Date : 2020-09-17 DOI: 10.12086/OEE.2020.190523
Lei Ming, Yu Huaiyong, Fang Yuan, Xiang-Peng Qiang, Y. Yi, Zhang Lizhe
{"title":"Research on laser frequency locking technology based on temperature and PZT control","authors":"Lei Ming, Yu Huaiyong, Fang Yuan, Xiang-Peng Qiang, Y. Yi, Zhang Lizhe","doi":"10.12086/OEE.2020.190523","DOIUrl":"https://doi.org/10.12086/OEE.2020.190523","url":null,"abstract":"Aiming at the application requirement of resonator fiber optic gyroscopes, a frequency tracking and locking control scheme based on laser temperature and PZT control is proposed in this paper. By taking advantages of the large range of laser temperature tuning as well as the high precision and high dynamicity of PZT tuning, tracking of the fiber laser’s central frequency to the fiber ring resonator’s resonance frequency is realized. Typical transmission resonant curve is simulated by mathematical methods. Hardware design, algorithm simulations of temperature and PZT control scheme are carried out. The influence of control parameters on tracking stability is analyzed. The development of laser frequency tracking systems is assembled. The high-precision and long-time tracking of laser’s central frequency to resonance frequency is realized successfully. The locking precision is low to 4.8×10-9 over one hour under room temperature. The locking precision is low to 9.74×10-8 over 5.5 hours under variable temperature. This work has laid an important foundation for improving the long-term performance of resonator fiber optic gyroscopes.","PeriodicalId":39552,"journal":{"name":"Guangdian Gongcheng/Opto-Electronic Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82930274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
In-situ deflectometric measurement of optical surfaces for precision manufacturing 精密制造光学表面的原位偏转测量
Guangdian Gongcheng/Opto-Electronic Engineering Pub Date : 2020-09-01 DOI: 10.12086/OEE.2020.190581
Zhang Xiangchao, Xu Min
{"title":"In-situ deflectometric measurement of optical surfaces for precision manufacturing","authors":"Zhang Xiangchao, Xu Min","doi":"10.12086/OEE.2020.190581","DOIUrl":"https://doi.org/10.12086/OEE.2020.190581","url":null,"abstract":"The in-situ measurement of complex optical surfaces is a challenging task in precision engineering. The phase measuring deflectometry is a powerful measuring method for complex specular surfaces, and it has higher measuring efficiency, stability and dynamic range compared to interferometry. Consequently it is promising to widespread applications in various fields. Deflectometry is essentially a calibration problem, and the measuring accuracy is directly determined by the quality of geometrical calibration. An in-situ deflectometric measuring system is designed based on the single point diamond turning machine. A self-calibration method is developed to specify the relative positions of the camera and screen. Ray tracing is conducted at two positions of an auxiliary reflecting mirror, which is mounted on an air bearing spindle. The accuracy of the geometrical positions can be improved by an order of magnitude by minimizing the deviations of the traced points with respect to the true correspondences. According to the statistical properties of the deviations in reverse ray tracing, the form errors and the position errors can be separated, and the positioning error of the workpiece can be corrected accordingly. Henceforth, the nominal shape of the fabricated workpiece can be fully utilized, and the conventional one-way position-form mapping can be converted into a two-way mapping problem. As for the complex shapes, the whole surface can be covered by sub-aperture measurement. Precise localization of a local region under test is achieved by multi-position imaging, so that correct convergence of the iterative reconstruction process can be guaranteed. Several typical optical surfaces including an off-axis paraboloid mirror are measured, and the measuring accuracy of the proposed method is proved better than 150 nm RMS.","PeriodicalId":39552,"journal":{"name":"Guangdian Gongcheng/Opto-Electronic Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89956188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The research progress of surface interferometric measurement with higher accuracy 高精度表面干涉测量的研究进展
Guangdian Gongcheng/Opto-Electronic Engineering Pub Date : 2020-08-31 DOI: 10.12086/OEE.2020.200209
Hou Xi, Z. Shuai, Hu Xiaochuan, Quan Haiyang, Wu Gao-feng, Jiao Xin, He Yi-wei, Chengwen Qiang, Wu Fan
{"title":"The research progress of surface interferometric measurement with higher accuracy","authors":"Hou Xi, Z. Shuai, Hu Xiaochuan, Quan Haiyang, Wu Gao-feng, Jiao Xin, He Yi-wei, Chengwen Qiang, Wu Fan","doi":"10.12086/OEE.2020.200209","DOIUrl":"https://doi.org/10.12086/OEE.2020.200209","url":null,"abstract":"With the continuous development of modern optics, such as EUV, DUV lithography and the advanced light source, the surface interferometric measurement with higher accuracy has become an important challenge. The surface accuracy as one of key technical parameters will be required to nanometer, sub-nanometer, even picometer. The surface interferometric measurement with higher accuracy push the limits of surface metrology, has important research significance and application value. This paper analyzes the development trends of surface interferometric measurement with higher accuracy and reports the related research progress of Institute of Optics and Electronics, Chinese Academy of Sciences.","PeriodicalId":39552,"journal":{"name":"Guangdian Gongcheng/Opto-Electronic Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74579869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Current status of ultra-precision manufacturing of complex curved aluminum reflectors 复杂曲面铝反射器超精密制造现状
Guangdian Gongcheng/Opto-Electronic Engineering Pub Date : 2020-08-31 DOI: 10.12086/OEE.2020.200147
X. Chao, Peng Xiaoqiang, Dai Yifan
{"title":"Current status of ultra-precision manufacturing of complex curved aluminum reflectors","authors":"X. Chao, Peng Xiaoqiang, Dai Yifan","doi":"10.12086/OEE.2020.200147","DOIUrl":"https://doi.org/10.12086/OEE.2020.200147","url":null,"abstract":"Due to the unique advantages of complex curved aluminum mirrors, its application in optical systems is becoming more and more widespread. However, the accuracy of optical mirrors that are only processed by ultra-precision turning is limited by the \"error reflection\" of ultra-precision turning, which can only meet the application requirements of infrared systems, and its further promotion and application have encountered bottlenecks. The combined processing technology of ultra-precision turning, magnetorheological polishing, and computer-controlled surface forming (CCOS), combined with the computational hologram method (CGH) of the complex optical curved surface (CGH) surface shape detection technology, can further improve the surface shape accuracy of the aluminum reflector, to meet the application requirements of visible light systems, and lay the foundation for the promotion and application of complex curved aluminum alloy mirrors.","PeriodicalId":39552,"journal":{"name":"Guangdian Gongcheng/Opto-Electronic Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82508751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Preparation and environmental simulation tests of large-size silicon carbide brazed reflection mirrors 大型碳化硅钎焊反射镜的制备及环境模拟试验
Guangdian Gongcheng/Opto-Electronic Engineering Pub Date : 2020-08-31 DOI: 10.12086/OEE.2020.200088
Liu Yan, Zhang Hui, Liu Leimin, Yang Xiao, H. Jian, Liu Xue-jian, Chen Zhong-ming, Huang Zheng-ren
{"title":"Preparation and environmental simulation tests of large-size silicon carbide brazed reflection mirrors","authors":"Liu Yan, Zhang Hui, Liu Leimin, Yang Xiao, H. Jian, Liu Xue-jian, Chen Zhong-ming, Huang Zheng-ren","doi":"10.12086/OEE.2020.200088","DOIUrl":"https://doi.org/10.12086/OEE.2020.200088","url":null,"abstract":"With the space technologies progress rapidly, demand of large-size mirrors is intensively growing. In this paper, the developing trend of large-size space mirrors was discussed from the angles of material and fabrication technology. Taking 1.0 m aperture technical validation brazed mirror as an example, the design and fabrication of segments, joining and optic machining were analyzed. In addition, the 1.0 m aperture technical validation brazed mirror was performed environmental tests including thermal-vacuum test, vibration test and anti-radiation test in order to evaluate its engineering applicability. The experimental results show that the surface figure of the 1.0 m aperture technical validation brazed mirror changed from 0.038λ (λ=632.8 nm) to 0.037λ and 0.036λ after thermo-vacuum test and vibration test. Additionally, reflectivity of the brazed mirror basically kept stable after 60Co γ-ray radiation test, indicating a brilliant application prospect.","PeriodicalId":39552,"journal":{"name":"Guangdian Gongcheng/Opto-Electronic Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80481250","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Shape measurement of stressed mirror based on stereoscopic phase measuring deflectometry 基于立体相位测量偏转法的应力反射镜形状测量
Guangdian Gongcheng/Opto-Electronic Engineering Pub Date : 2020-08-31 DOI: 10.12086/OEE.2020.190435
C. Zhenyi, Zhao Wen-chuan, Zhang Qican, Han Yu, Liu Yuankun
{"title":"Shape measurement of stressed mirror based on stereoscopic phase measuring deflectometry","authors":"C. Zhenyi, Zhao Wen-chuan, Zhang Qican, Han Yu, Liu Yuankun","doi":"10.12086/OEE.2020.190435","DOIUrl":"https://doi.org/10.12086/OEE.2020.190435","url":null,"abstract":"Stressed polishing technology transforms aspheric fabrication into spherical fabrication by applying pre-determined loads on the surface of the mirror. The key to achieve high precision of stressed polishing is to test the surface deformation with high precision. Stereoscopic phase measuring deflectometry was used to test the surface topography and the deformation of stressed mirror. After obtained unwrapped phase distribution, and combined with normal consistency constraint and gradient integral algorithm, the height distribution was finally obtained. Composition of systematic errors were simulated. Also, the errors were calibrated and removed by N-step averaging method in this system, which improved the measuring precision. In this paper, the surface topography and the deformation of a stressed mirror with a diameter of 320 mm, spherical radius of 5200 mm were measured. The measuring results were consistent with the corresponding result of CMM and finite element simulation, indicating that this proposed method is on the level of micron in terms of accuracy and more suitable for the test of stressed mirror compared with interferometer and CMM.","PeriodicalId":39552,"journal":{"name":"Guangdian Gongcheng/Opto-Electronic Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76794691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Research on flying cutting technology with micro pyramid array structure 微金字塔阵列飞切技术研究
Guangdian Gongcheng/Opto-Electronic Engineering Pub Date : 2020-08-31 DOI: 10.12086/OEE.2020.190179
Du Dan, Huang Yuetian, Fan Bin
{"title":"Research on flying cutting technology with micro pyramid array structure","authors":"Du Dan, Huang Yuetian, Fan Bin","doi":"10.12086/OEE.2020.190179","DOIUrl":"https://doi.org/10.12086/OEE.2020.190179","url":null,"abstract":"The fabrication of optical elements with microstructural arrays has attracted more and more attention. Single-point diamond flying cutting technology has been gradually applied to the fabrication of microstructures with the advantages of high efficiency, low cost and high machining accuracy. This paper mainly studies the influence of repeated positioning errors of machine tools and errors introduced by cyclic machining on micro-structure turning effect when flying cutter turning micro-pyramid structure, analyses the conditions of secondary groove generation in V-groove turning, studies the methods of restraining secondary groove generation, and finally verifies through experiments that the generation of secondary groove can be restrained by controlling the turning depth greater than the minimum turning depth.","PeriodicalId":39552,"journal":{"name":"Guangdian Gongcheng/Opto-Electronic Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82486743","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信