Research on laser frequency locking technology based on temperature and PZT control

Q3 Engineering
Lei Ming, Yu Huaiyong, Fang Yuan, Xiang-Peng Qiang, Y. Yi, Zhang Lizhe
{"title":"Research on laser frequency locking technology based on temperature and PZT control","authors":"Lei Ming, Yu Huaiyong, Fang Yuan, Xiang-Peng Qiang, Y. Yi, Zhang Lizhe","doi":"10.12086/OEE.2020.190523","DOIUrl":null,"url":null,"abstract":"Aiming at the application requirement of resonator fiber optic gyroscopes, a frequency tracking and locking control scheme based on laser temperature and PZT control is proposed in this paper. By taking advantages of the large range of laser temperature tuning as well as the high precision and high dynamicity of PZT tuning, tracking of the fiber laser’s central frequency to the fiber ring resonator’s resonance frequency is realized. Typical transmission resonant curve is simulated by mathematical methods. Hardware design, algorithm simulations of temperature and PZT control scheme are carried out. The influence of control parameters on tracking stability is analyzed. The development of laser frequency tracking systems is assembled. The high-precision and long-time tracking of laser’s central frequency to resonance frequency is realized successfully. The locking precision is low to 4.8×10-9 over one hour under room temperature. The locking precision is low to 9.74×10-8 over 5.5 hours under variable temperature. This work has laid an important foundation for improving the long-term performance of resonator fiber optic gyroscopes.","PeriodicalId":39552,"journal":{"name":"光电工程","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"光电工程","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.12086/OEE.2020.190523","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1

Abstract

Aiming at the application requirement of resonator fiber optic gyroscopes, a frequency tracking and locking control scheme based on laser temperature and PZT control is proposed in this paper. By taking advantages of the large range of laser temperature tuning as well as the high precision and high dynamicity of PZT tuning, tracking of the fiber laser’s central frequency to the fiber ring resonator’s resonance frequency is realized. Typical transmission resonant curve is simulated by mathematical methods. Hardware design, algorithm simulations of temperature and PZT control scheme are carried out. The influence of control parameters on tracking stability is analyzed. The development of laser frequency tracking systems is assembled. The high-precision and long-time tracking of laser’s central frequency to resonance frequency is realized successfully. The locking precision is low to 4.8×10-9 over one hour under room temperature. The locking precision is low to 9.74×10-8 over 5.5 hours under variable temperature. This work has laid an important foundation for improving the long-term performance of resonator fiber optic gyroscopes.
基于温度和压电陶瓷控制的激光锁频技术研究
针对谐振式光纤陀螺仪的应用需求,提出了一种基于激光温度和PZT控制的频率跟踪锁定控制方案。利用激光温度调谐范围大、PZT调谐精度高、动态性强的优点,实现了光纤激光器中心频率对光纤环形谐振器谐振频率的跟踪。用数学方法模拟了典型的传输谐振曲线。进行了硬件设计、温度算法仿真和PZT控制方案。分析了控制参数对跟踪稳定性的影响。介绍了激光频率跟踪系统的发展概况。成功地实现了激光中心频率对共振频率的高精度长时间跟踪。锁定精度低至4.8×10-9在室温下超过一小时。在可变温度下,锁定精度低至9.74×10-8超过5.5小时。该工作为提高谐振式光纤陀螺仪的长期性能奠定了重要的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
光电工程
光电工程 Engineering-Electrical and Electronic Engineering
CiteScore
2.00
自引率
0.00%
发文量
6622
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信