In Silico Biology最新文献

筛选
英文 中文
Towards a virtual C. elegans: a framework for simulation and visualization of the neuromuscular system in a 3D physical environment. 迈向虚拟秀丽隐杆线虫:在三维物理环境中模拟和可视化神经肌肉系统的框架。
In Silico Biology Pub Date : 2011-01-01 DOI: 10.3233/ISB-2012-0445
Andrey Palyanov, Sergey Khayrulin, Stephen D Larson, Alexander Dibert
{"title":"Towards a virtual C. elegans: a framework for simulation and visualization of the neuromuscular system in a 3D physical environment.","authors":"Andrey Palyanov,&nbsp;Sergey Khayrulin,&nbsp;Stephen D Larson,&nbsp;Alexander Dibert","doi":"10.3233/ISB-2012-0445","DOIUrl":"https://doi.org/10.3233/ISB-2012-0445","url":null,"abstract":"<p><p>The nematode C. elegans is the only animal with a known neuronal wiring diagram, or \"connectome\". During the last three decades, extensive studies of the C. elegans have provided wide-ranging data about it, but few systematic ways of integrating these data into a dynamic model have been put forward. Here we present a detailed demonstration of a virtual C. elegans aimed at integrating these data in the form of a 3D dynamic model operating in a simulated physical environment. Our current demonstration includes a realistic flexible worm body model, muscular system and a partially implemented ventral neural cord. Our virtual C. elegans demonstrates successful forward and backward locomotion when sending sinusoidal patterns of neuronal activity to groups of motor neurons. To account for the relatively slow propagation velocity and the attenuation of neuronal signals, we introduced \"pseudo neurons\" into our model to simulate simplified neuronal dynamics. The pseudo neurons also provide a good way of visualizing the nervous system's structure and activity dynamics.</p>","PeriodicalId":39379,"journal":{"name":"In Silico Biology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3233/ISB-2012-0445","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"30870652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 38
Hydrophobic tint of knot proteins 结蛋白的疏水性
In Silico Biology Pub Date : 2010-02-15 DOI: 10.1145/1722024.1722034
P. Anto, S. N. Achuthsankar
{"title":"Hydrophobic tint of knot proteins","authors":"P. Anto, S. N. Achuthsankar","doi":"10.1145/1722024.1722034","DOIUrl":"https://doi.org/10.1145/1722024.1722034","url":null,"abstract":"Protein structures having knotted configurations in their native fold, have great impact in their function. Protein knot localization has become possible in single molecule experiments though they are identified in their structure level. Signal processing methods which have played an important role to analyse genomic and proteomic sequences are also useful for knot protein analysis. The amino acid index hydrophobicity contributes the knowledge of stability of proteins. Water capture and release is found to be controllable by the tightening force in knots which are related to this index. It is observed that, the knot proteins are of hydrophobic in nature by Fourier analysis, Power spectral density estimation and Cross correlation method. The set of knot proteins from proteinKNOT web server(pKNOT) has been used for the experimentation and proved 93% of them are of hydrophobic nature in their knotted core.","PeriodicalId":39379,"journal":{"name":"In Silico Biology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2010-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1145/1722024.1722034","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"64107794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improving prediction of protein secondary structure using physicochemical properties of amino acids 利用氨基酸的理化性质改进蛋白质二级结构的预测
In Silico Biology Pub Date : 2010-02-15 DOI: 10.1145/1722024.1722036
P. Chatterjee, Subhadip Basu, M. Nasipuri
{"title":"Improving prediction of protein secondary structure using physicochemical properties of amino acids","authors":"P. Chatterjee, Subhadip Basu, M. Nasipuri","doi":"10.1145/1722024.1722036","DOIUrl":"https://doi.org/10.1145/1722024.1722036","url":null,"abstract":"Protein Structure Prediction is important in the sense that it helps to extend knowledge about the understanding of protein structures and functions. The knowledge is essential for prediction of secondary structures of unknown proteins required for applications related to drug discovery. A novel technique for protein secondary structure prediction is presented here. In this work, two levels of multi-layer feed forward neural networks are used. In the first level network, sequence profiles from PSI-BLAST and physicochemical properties of amino acids are used for sequence to structure predictions. Confidence values of forming helix, sheet and coil, obtained from the first level network are then used with the second level network for structure to structure predictions. The overall prediction accuracy as obtained through experimentation is in the range of 75.58% to 77.48%. This method is trained and tested with nrDSSP datasets using four folds cross validation. It is also tested on target proteins of Critical Assessment of Protein Structure Prediction Experiment (CASP3) and achieves better results than PSIPRED over some target proteins.","PeriodicalId":39379,"journal":{"name":"In Silico Biology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2010-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1145/1722024.1722036","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"64107844","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
Application of reactive GRASP to the biclustering of gene expression data 反应性GRASP在基因表达数据双聚类中的应用
In Silico Biology Pub Date : 2010-02-15 DOI: 10.1145/1722024.1722041
Shyama Das, S. M. Idicula
{"title":"Application of reactive GRASP to the biclustering of gene expression data","authors":"Shyama Das, S. M. Idicula","doi":"10.1145/1722024.1722041","DOIUrl":"https://doi.org/10.1145/1722024.1722041","url":null,"abstract":"A bicluster in gene expression dataset is a subset of genes that exhibit similar expression patterns through a subset of conditions. In this work biclusters are identified in two steps. In the first step high quality bicluster seeds are generated using KMeans clustering algorithm. These seeds are then enlarged using Reactive Greedy Randomized Adaptive Search Procedure (RGRASP) which is a multi-start metaheuristic method in which there are two phases, construction and local search. The objective here is to identify biclusters of maximum size with MSR lower than a given threshold. Experiments are conducted on both Yeast and Human Lymphoma datasets. The Experimental results on the benchmark datasets demonstrate that RGRASP is capable of identifying high quality biclusters compared to many of the already existing biclustering algorithms. Compared to the already existing algorithm based on the same RGRASP metaheuristics biclusters with larger size and lower mean squared residue are obtained using this algorithm in Yeast dataset. Moreover in this study the RGRASP is applied for the first time to find biclusters from the Human Lymphoma dataset.","PeriodicalId":39379,"journal":{"name":"In Silico Biology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2010-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1145/1722024.1722041","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"64107881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Fuzzy pattern extraction for classification of protein sequences 模糊模式提取在蛋白质序列分类中的应用
In Silico Biology Pub Date : 2010-02-15 DOI: 10.1145/1722024.1722046
Abhijit J. Kulkarni, A. Noronha, Sasanka Roy, S. Angadi
{"title":"Fuzzy pattern extraction for classification of protein sequences","authors":"Abhijit J. Kulkarni, A. Noronha, Sasanka Roy, S. Angadi","doi":"10.1145/1722024.1722046","DOIUrl":"https://doi.org/10.1145/1722024.1722046","url":null,"abstract":"Text mining is an important research area in applied statistics. The present article addresses an important problem from the Bioinformatics field, viz. classification of protein sequences as soluble proteins and inclusion body forming proteins when over-expressed in Escherichia coli (E. coli), using text mining and machine learning techniques. We propose a text mining based algorithm to extract patterns from the protein sequences that are later used in support vector classification algorithm. We report the best classification results for this dataset compared to the existing state of the art. Our algorithm is quite general and can be applied to any biological text data. The extracted patterns may give further insight in underlying dynamics of the sequences that decide the corresponding class membership.","PeriodicalId":39379,"journal":{"name":"In Silico Biology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2010-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1145/1722024.1722046","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"64107923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Study of indole inhibitors to increase the affinity of hnps-PLA2 in inflammatory disease 吲哚抑制剂在炎性疾病中增加hnps-PLA2亲和力的研究
In Silico Biology Pub Date : 2010-02-15 DOI: 10.1145/1722024.1722056
Amit Nagal, Swapnil R. Jaiswal, H. Yadav, M. Mohan, P. Ghosh
{"title":"Study of indole inhibitors to increase the affinity of hnps-PLA2 in inflammatory disease","authors":"Amit Nagal, Swapnil R. Jaiswal, H. Yadav, M. Mohan, P. Ghosh","doi":"10.1145/1722024.1722056","DOIUrl":"https://doi.org/10.1145/1722024.1722056","url":null,"abstract":"There are many Drug used in the treatment of inflammation disease like NSAIDS but there limitation encouraging more research in inflammatory related diseases. Phospholipases A2 (PLA2s) are enzymes that catalyze the hydrolysis of the sn-2 acyl ester linkage of phospholipids, producing fatty acids and lysophospholipids. Their enzymatic activity is a rate-limiting step in the formation of arachidonic acid and subsequently in the synthesis of leukotrienes and prostaglandins. The current Structure Based Drug Designing approach analysis and comparative docking studies of various hnps-PLA2 indole inhibitor derivatives have shown that they act better in compare with other molecules. ADME studies shows that indole derivatives would be potential of being a safe drug","PeriodicalId":39379,"journal":{"name":"In Silico Biology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2010-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1145/1722024.1722056","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"64108413","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Finding motifs using harmony search 使用和声搜索寻找主题
In Silico Biology Pub Date : 2010-02-15 DOI: 10.1145/1722024.1722072
Jyotshna Dongardive, Aarti Patil, A. Bir, S. Jamkhedkar, Siby Abraham
{"title":"Finding motifs using harmony search","authors":"Jyotshna Dongardive, Aarti Patil, A. Bir, S. Jamkhedkar, Siby Abraham","doi":"10.1145/1722024.1722072","DOIUrl":"https://doi.org/10.1145/1722024.1722072","url":null,"abstract":"The paper proposes a novel methodology for finding motifs of biological data. It uses music inspired meta-heuristic optimization technique called harmony search to find motif. The model is based on randomly generated l-mers as the initial harmony memory. Pitch adjustment and random selection are used to generate new l-mers, which are adjudged by a specially defined objective function. The proposed method is experimentally validated using sequences of Human Papillomavirus strains obtained from accredited and authorized sources.","PeriodicalId":39379,"journal":{"name":"In Silico Biology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2010-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1145/1722024.1722072","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"64108497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Biclustering gene expression data using KMeans-binary PSO hybrid 使用kmeans -二进制PSO杂交对基因表达数据进行双聚类
In Silico Biology Pub Date : 2010-02-15 DOI: 10.1145/1722024.1722074
Shyama Das, S. M. Idicula
{"title":"Biclustering gene expression data using KMeans-binary PSO hybrid","authors":"Shyama Das, S. M. Idicula","doi":"10.1145/1722024.1722074","DOIUrl":"https://doi.org/10.1145/1722024.1722074","url":null,"abstract":"Biclustering is a very useful data mining technique which identifies coherent patterns from microarray gene expression data. A bicluster of a gene expression dataset is a subset of genes which exhibit similar expression patterns along a subset of conditions. Biclustering is a powerful analytical tool for the biologist and has generated considerable interest over the past few decades. The problem of locating the most significant biclusters in gene expression data has shown to be NP complete. In this paper a PSO based algorithm is developed for biclustering gene expression data. This algorithm has three steps. In the first step high quality bicluster seeds are generated using KMeans clustering algorithm. From these seeds biclusters are generated using particle swarm optimization. In the third stage an iterative search is performed to check the possibility of adding more genes and conditions within the given threshold value of mean squared residue score. Experimental results on real datasets show that our approach can effectively find high quality biclusters.","PeriodicalId":39379,"journal":{"name":"In Silico Biology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2010-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1145/1722024.1722074","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"64108581","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Cis regulatory module discovery in immune cell development 免疫细胞发育中Cis调控模块的发现
In Silico Biology Pub Date : 2010-02-15 DOI: 10.1145/1722024.1722039
S. R. Ganakammal, M. Kaplan, N. Perumal
{"title":"Cis regulatory module discovery in immune cell development","authors":"S. R. Ganakammal, M. Kaplan, N. Perumal","doi":"10.1145/1722024.1722039","DOIUrl":"https://doi.org/10.1145/1722024.1722039","url":null,"abstract":"Transcriptional regulatory mechanisms are mediated by a set of transcription factors (TFs), which bind to a specific region (motifs or transcription factor binding sites, TFBS), on the target gene(s) leading to gene expression. Eukaryotic regulatory motifs, referred to as cis regulatory modules (CRMs), tend to co-occur near the regulated gene's transcription start site and provide the building blocks to transcriptional regulatory networks that model the relevant TF-TFBS interactions. Here, we study IL-12 stimulated transcriptional regulators in STAT4 mediated T helper 1 (Th1) cell development by focusing on the identification of TFBS and CRMs using a set of Stat4 ChIP-on-chip target genes. A region containing 2000 bases of Mus musculus sequences with the Stat4 binding site, derived from the ChIP-on-chip data, has been characterized for enrichment of other motifs and, thus CRMs. We find two such motifs, (NF-κB and PPARγ/RXR) being enriched in the Stat4 binding sequences compared to neighboring background sequences and sets of random sequences of equal size. Furthermore, these predicted CRMs were observed to be associated with biologically relevant target genes in the ChIP-on-chip data set by meaningful gene ontology annotations. These analyses will lead to a better understanding of transcriptional regulatory networks in IL-12 stimulated Stat4 mediated Th1 cell differentiation.","PeriodicalId":39379,"journal":{"name":"In Silico Biology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2010-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1145/1722024.1722039","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"64107849","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Complete enumeration of compact structural motifs in proteins 在蛋白质中紧凑结构基序的完整枚举
In Silico Biology Pub Date : 2010-02-15 DOI: 10.1145/1722024.1722047
Bhadrachalam Chitturi, D. Bein, N. Grishin
{"title":"Complete enumeration of compact structural motifs in proteins","authors":"Bhadrachalam Chitturi, D. Bein, N. Grishin","doi":"10.1145/1722024.1722047","DOIUrl":"https://doi.org/10.1145/1722024.1722047","url":null,"abstract":"The search of structural motifs that specify the spatial arrangement of polypeptide segments is preferred over other methods such as common substructure discovery and structural superposition in comparing protein structures. 3D protein structures can be modeled as graphs whose maximum degree is bounded by a constant. Structural motifs can also be modeled as graphs and a significant percentage of them are trees. Thus, motif search in proteins can be modeled as an enumeration of isomorphic subgraphs where a query tree Q with m nodes is searched in a sparse graph G with n nodes and the maximum degree of any node in G is bounded by a constant ε. We design an efficient divide-and-conquer algorithm that finds all copies of Q in G by partitioning Q using a minimum dominating set. This strategy can be extended to sparse query graphs that can be reduced to trees by deleting a small number of edges.","PeriodicalId":39379,"journal":{"name":"In Silico Biology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2010-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1145/1722024.1722047","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"64108140","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信