GO用于表达式数据的集成。

Q2 Medicine
Dikla Dotan-Cohen, Dana Moonshine, Moshe Natan, Yonat Shemer-Avni, Avraham A Melkman
{"title":"GO用于表达式数据的集成。","authors":"Dikla Dotan-Cohen,&nbsp;Dana Moonshine,&nbsp;Moshe Natan,&nbsp;Yonat Shemer-Avni,&nbsp;Avraham A Melkman","doi":"10.3233/ISB-2012-0439","DOIUrl":null,"url":null,"abstract":"<p><p>The low reproducibility of differential expression of individual genes in microarray experiments has led to the suggestion that experiments be analyzed in terms of gene characteristics, such as GO categories or pathways, in order to enhance the robustness of the results. An implicit assumption of this approach is that the different experiments in effect randomly sample the genes participating in an active process. We argue that by the same rationale it is possible to perform this higher-level analysis on the aggregation of genes that are differentially-expressed in different expression-based studies, even if the experiments used different platforms. The aggregation increases the reliability of the results, it has the potential for uncovering signals that are liable to escape detection in the individual experiments, and it enables a more thorough mining of the ever more plentiful microarray data. We present here a proof-of-concept study of these ideas, using ten studies describing the changes in expression profiles of human host genes in response to infection by Retroviridae or Herpesviridae viral families. We supply a tool (accessible at www.cs.bgu.ac.il/∼waytogo) which enables the user to learn about genes and processes of interest in this study.</p>","PeriodicalId":39379,"journal":{"name":"In Silico Biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3233/ISB-2012-0439","citationCount":"0","resultStr":"{\"title\":\"GO for integration of expression data.\",\"authors\":\"Dikla Dotan-Cohen,&nbsp;Dana Moonshine,&nbsp;Moshe Natan,&nbsp;Yonat Shemer-Avni,&nbsp;Avraham A Melkman\",\"doi\":\"10.3233/ISB-2012-0439\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The low reproducibility of differential expression of individual genes in microarray experiments has led to the suggestion that experiments be analyzed in terms of gene characteristics, such as GO categories or pathways, in order to enhance the robustness of the results. An implicit assumption of this approach is that the different experiments in effect randomly sample the genes participating in an active process. We argue that by the same rationale it is possible to perform this higher-level analysis on the aggregation of genes that are differentially-expressed in different expression-based studies, even if the experiments used different platforms. The aggregation increases the reliability of the results, it has the potential for uncovering signals that are liable to escape detection in the individual experiments, and it enables a more thorough mining of the ever more plentiful microarray data. We present here a proof-of-concept study of these ideas, using ten studies describing the changes in expression profiles of human host genes in response to infection by Retroviridae or Herpesviridae viral families. We supply a tool (accessible at www.cs.bgu.ac.il/∼waytogo) which enables the user to learn about genes and processes of interest in this study.</p>\",\"PeriodicalId\":39379,\"journal\":{\"name\":\"In Silico Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.3233/ISB-2012-0439\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"In Silico Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/ISB-2012-0439\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"In Silico Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/ISB-2012-0439","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

微阵列实验中单个基因差异表达的低重复性导致人们建议根据基因特征(如氧化石墨烯类别或途径)对实验进行分析,以增强结果的稳健性。这种方法的一个隐含假设是,不同的实验实际上是随机抽样参与一个活动过程的基因。我们认为,基于同样的原理,即使实验使用不同的平台,也可以对不同表达研究中差异表达的基因聚集进行更高水平的分析。聚合增加了结果的可靠性,它有可能发现在单个实验中容易逃脱检测的信号,并且它可以更彻底地挖掘越来越丰富的微阵列数据。在此,我们提出了一项概念验证研究,利用10项研究描述了逆转录病毒科或疱疹病毒科病毒家族感染后人类宿主基因表达谱的变化。我们提供了一个工具(可在www.cs.bgu.ac.il/ ~ waytogo访问),使用户能够了解本研究中感兴趣的基因和过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GO for integration of expression data.

The low reproducibility of differential expression of individual genes in microarray experiments has led to the suggestion that experiments be analyzed in terms of gene characteristics, such as GO categories or pathways, in order to enhance the robustness of the results. An implicit assumption of this approach is that the different experiments in effect randomly sample the genes participating in an active process. We argue that by the same rationale it is possible to perform this higher-level analysis on the aggregation of genes that are differentially-expressed in different expression-based studies, even if the experiments used different platforms. The aggregation increases the reliability of the results, it has the potential for uncovering signals that are liable to escape detection in the individual experiments, and it enables a more thorough mining of the ever more plentiful microarray data. We present here a proof-of-concept study of these ideas, using ten studies describing the changes in expression profiles of human host genes in response to infection by Retroviridae or Herpesviridae viral families. We supply a tool (accessible at www.cs.bgu.ac.il/∼waytogo) which enables the user to learn about genes and processes of interest in this study.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
In Silico Biology
In Silico Biology Computer Science-Computational Theory and Mathematics
CiteScore
2.20
自引率
0.00%
发文量
1
期刊介绍: The considerable "algorithmic complexity" of biological systems requires a huge amount of detailed information for their complete description. Although far from being complete, the overwhelming quantity of small pieces of information gathered for all kind of biological systems at the molecular and cellular level requires computational tools to be adequately stored and interpreted. Interpretation of data means to abstract them as much as allowed to provide a systematic, an integrative view of biology. Most of the presently available scientific journals focus either on accumulating more data from elaborate experimental approaches, or on presenting new algorithms for the interpretation of these data. Both approaches are meritorious.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信