生物医学工程学杂志Pub Date : 2024-06-25DOI: 10.7507/1001-5515.202310029
Hang Yao, Hongli Yu, Boai Du
{"title":"[A study on the effects of transcranial direct current stimulation combined with motor imagery on brain function based on electroencephalogram and near infrared spectrum].","authors":"Hang Yao, Hongli Yu, Boai Du","doi":"10.7507/1001-5515.202310029","DOIUrl":"10.7507/1001-5515.202310029","url":null,"abstract":"<p><p>Motor imagery is often used in the fields of sports training and neurorehabilitation for its advantages of being highly targeted, easy to learn, and requiring no special equipment, and has become a major research paradigm in cognitive neuroscience. Transcranial direct current stimulation (tDCS), an emerging neuromodulation technique, modulates cortical excitability, which in turn affects functions such as locomotion. However, it is unclear whether tDCS has a positive effect on motor imagery task states. In this paper, 16 young healthy subjects were included, and the electroencephalogram (EEG) signals and near-infrared spectrum (NIRS) signals of the subjects were collected when they were performing motor imagery tasks before and after receiving tDCS, and the changes in multiscale sample entropy (MSE) and haemoglobin concentration were calculated and analyzed during the different tasks. The results found that MSE of task-related brain regions increased, oxygenated haemoglobin concentration increased, and total haemoglobin concentration rose after tDCS stimulation, indicating that tDCS increased the activation of task-related brain regions and had a positive effect on motor imagery. This study may provide some reference value for the clinical study of tDCS combined with motor imagery.</p>","PeriodicalId":39324,"journal":{"name":"生物医学工程学杂志","volume":"41 3","pages":"476-484"},"PeriodicalIF":0.0,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11208650/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141459791","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"[Design and performance study of bone trabecular scaffolds based on triply periodic minimal surface method].","authors":"Yutao Men, Shaocan Tang, Wei Chen, Fulong Liu, Chunqiu Zhang","doi":"10.7507/1001-5515.202310005","DOIUrl":"10.7507/1001-5515.202310005","url":null,"abstract":"<p><p>Triply periodic minimal surface (TPMS) is widely used because it can be used to control the shape of porous scaffolds precisely by formula. In this paper, an I-wrapped package (I-WP) type porous scaffolds were constructed. The finite element method was used to study the relationship between the wall thickness and period, the morphology and mechanical properties of the scaffolds, as well as to study the compression and fluid properties. It was found that the porosity of I-WP type scaffolds with different wall thicknesses (0.1 ~ 0.2 mm) and periods (I-WP 1 ~ I-WP 5) ranged from 68.01% ~ 96.48%, and the equivalent elastic modulus ranged from 0.655 ~ 18.602 GPa; the stress distribution of the scaffolds tended to be uniform with the increase of periods and wall thicknesses; the equivalent elastic modulus of the I-WP type scaffolds was basically unchanged after the topology optimization, and the permeability was improved by 52.3%. In conclusion, for the I-WP type scaffolds, the period parameter can be adjusted first, then the wall thickness parameter can be controlled. Topology optimization can be combined to meet the design requirements. The I-WP scaffolds constructed in this paper have good mechanical properties and meet the requirements of repairing human bone tissue, which may provide a new choice for the design of artificial bone trabecular scaffolds.</p>","PeriodicalId":39324,"journal":{"name":"生物医学工程学杂志","volume":"41 3","pages":"584-594"},"PeriodicalIF":0.0,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11208662/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141459727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"[Development of flexible multi-phase barium titanate piezoelectric sensor for physiological health and action behavior monitoring].","authors":"Qinghao Zeng, Shulang Han, Ying Liang, Xiaobao Tian","doi":"10.7507/1001-5515.202404016","DOIUrl":"10.7507/1001-5515.202404016","url":null,"abstract":"<p><p>Self-powered wearable piezoelectric sensing devices demand flexibility and high voltage electrical properties to meet personalized health and safety management needs. Aiming at the characteristics of piezoceramics with high piezoelectricity and low flexibility, this study designs a high-performance piezoelectric sensor based on multi-phase barium titanate (BTO) flexible piezoceramic film, namely multi-phase BTO sensor. The substrate-less self-supported multi-phase BTO films had excellent flexibility and could be bent 180° at a thickness of 33 μm, and exhibited good bending fatigue resistance in 1 × 10 <sup>4</sup> bending cycles at a thickness of 5 μm. The prepared multi-phase BTO sensor could maintain good piezoelectric stability after 1.2 × 10 <sup>4</sup> piezoelectric cycle tests. Based on the flexibility, high piezoelectricity, wearability, portability and battery-free self-powered characteristics of this sensor, the developed smart mask could monitor the respiratory signals of different frequencies and amplitudes in real time. In addition, by mounting the sensor on the hand or shoulder, different gestures and arm movements could also be detected. In summary, the multi-phase BTO sensor developed in this paper is expected to develop convenient and efficient wearable sensing devices for physiological health and behavioral activity monitoring applications.</p>","PeriodicalId":39324,"journal":{"name":"生物医学工程学杂志","volume":"41 3","pages":"421-429"},"PeriodicalIF":0.0,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11208643/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141459728","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
生物医学工程学杂志Pub Date : 2024-06-25DOI: 10.7507/1001-5515.202305048
Jie Liu, Lian Yan, Mingxin Qin, Haisheng Zhang, Mingsheng Chen
{"title":"[Magnetic induced phase shift detection system based on a novel sensor for cerebral hemorrhage].","authors":"Jie Liu, Lian Yan, Mingxin Qin, Haisheng Zhang, Mingsheng Chen","doi":"10.7507/1001-5515.202305048","DOIUrl":"10.7507/1001-5515.202305048","url":null,"abstract":"<p><p>The main magnetic field, generated by the excitation coil of the magnetic induction phase shift technology detection system, is mostly dispersed field with small field strength, and the offset effect needs to be further improved, which makes the detection signal weak and the detection system difficult to achieve quantitative detection, thus the technology is rarely used <i>in vivo</i> experiments and clinical trials. In order to improve problems mentioned above, a new Helmholtz birdcage sensor was designed. Stimulation experiment was carried out to analyze the main magnetic field in aspects of intensity and magnetic distribution, then different bleeding volume and bleeding rates experiments were conducted to compared with traditional sensors. The results showed that magnetic field intensity in detection region was 2.5 times than that of traditional sensors, cancellation effect of the main magnetic field was achieved, the mean value of phase difference of 10 mL rabbit blood was (-3.34 ± 0.21)°, and exponential fitting adjusted <i>R</i> <sup>2</sup> between phase difference and bleeding volumes and bleeding rates were both 0.99. The proposed Helmholtz birdcage sensor has a uniform magnetic field with a higher field strength, enable more accurate quantification of hemorrhage and monitored change of bleeding rates, providing significance in magnetic induced technology research for cerebral hemorrhage detection.</p>","PeriodicalId":39324,"journal":{"name":"生物医学工程学杂志","volume":"41 3","pages":"455-460"},"PeriodicalIF":0.0,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11208648/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141459732","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
生物医学工程学杂志Pub Date : 2024-06-25DOI: 10.7507/1001-5515.202309058
Yingfeng Kuang, Bo Che, Xuan Li, Lei Liu, Linhong Deng
{"title":"[Research on portable airway impedance monitoring device based on expiratory oscillation].","authors":"Yingfeng Kuang, Bo Che, Xuan Li, Lei Liu, Linhong Deng","doi":"10.7507/1001-5515.202309058","DOIUrl":"10.7507/1001-5515.202309058","url":null,"abstract":"<p><p>Monitoring airway impedance has significant clinical value in accurately assessing and diagnosing pulmonary function diseases at an early stage. To address the issue of large oscillator size and high power consumption in current pulmonary function devices, this study adopts a new strategy of expiration-driven oscillation. A lightweight and low-power airway impedance monitoring system with integrated sensing, control circuitry, and dynamic feedback system, providing visual feedback on the system's status, was developed. The respiratory impedance measurement experiments and statistical comparisons indicated that the system could achieve stable measurement of airway impedance at 5 Hz. The frequency spectrum curves of respiratory impedance ( <i>R</i> and <i>X</i>) showed consistent trends with those obtained from the clinical pulmonary function instrument, specifically the impulse oscillometry system (IOS). The differences between them were all less than 1.1 cm H <sub>2</sub>O·s/L. Additionally, there was a significant statistical difference in the respiratory impedance <i>R</i>5 between the exercise and rest groups, which suggests that the system can measure the variability of airway resistance parameters during exercise. Therefore, the impedance monitoring system developed in this study supports subjects in performing handheld, continuous measurements of dynamic changes in airway impedance over an extended period of time. This research provides a foundation for further developing low-power, portable, and even wearable devices for dynamic monitoring of pulmonary function.</p>","PeriodicalId":39324,"journal":{"name":"生物医学工程学杂志","volume":"41 3","pages":"430-438"},"PeriodicalIF":0.0,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11208649/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141459739","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
生物医学工程学杂志Pub Date : 2024-06-25DOI: 10.7507/1001-5515.202305025
Zetong Wang, Junhua Zhang, Xiao Wang
{"title":"[Skin lesion classification with multi-level fusion of Swin-T and ConvNeXt].","authors":"Zetong Wang, Junhua Zhang, Xiao Wang","doi":"10.7507/1001-5515.202305025","DOIUrl":"10.7507/1001-5515.202305025","url":null,"abstract":"<p><p>Skin cancer is a significant public health issue, and computer-aided diagnosis technology can effectively alleviate this burden. Accurate identification of skin lesion types is crucial when employing computer-aided diagnosis. This study proposes a multi-level attention cascaded fusion model based on Swin-T and ConvNeXt. It employed hierarchical Swin-T and ConvNeXt to extract global and local features, respectively, and introduced residual channel attention and spatial attention modules for further feature extraction. Multi-level attention mechanisms were utilized to process multi-scale global and local features. To address the problem of shallow features being lost due to their distance from the classifier, a hierarchical inverted residual fusion module was proposed to dynamically adjust the extracted feature information. Balanced sampling strategies and focal loss were employed to tackle the issue of imbalanced categories of skin lesions. Experimental testing on the ISIC2018 and ISIC2019 datasets yielded accuracy, precision, recall, and F1-Score of 96.01%, 93.67%, 92.65%, and 93.11%, respectively, and 92.79%, 91.52%, 88.90%, and 90.15%, respectively. Compared to Swin-T, the proposed method achieved an accuracy improvement of 3.60% and 1.66%, and compared to ConvNeXt, it achieved an accuracy improvement of 2.87% and 3.45%. The experiments demonstrate that the proposed method accurately classifies skin lesion images, providing a new solution for skin cancer diagnosis.</p>","PeriodicalId":39324,"journal":{"name":"生物医学工程学杂志","volume":"41 3","pages":"544-551"},"PeriodicalIF":0.0,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11208655/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141459794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"[Study on methods measuring mechanical properties of arterial wall by macroscopic indentation].","authors":"Yifan Cao, Zhipeng Gao, Yike Shi, Fen Li, Hui Song, Qianqian Zhang, Yawei Zhao, Lingfeng Chen, Xiaona Li, Weiyi Chen","doi":"10.7507/1001-5515.202310062","DOIUrl":"10.7507/1001-5515.202310062","url":null,"abstract":"<p><p>Accurately evaluating the local biomechanics of arterial wall is crucial for diagnosing and treating arterial diseases. Indentation measurement can be used to evaluate the local mechanical properties of the artery. However, the effects of the indenter's geometric structure and the analysis theory on measurement results remain uncertain. In this paper, four kinds of indenters were used to measure the pulmonary aorta, the proximal thoracic aorta and the distal thoracic aorta in pigs, and the arterial elastic modulus was calculated by Sneddon and Sirghi theory to explore the influence of the indenter geometry and analysis theory on the measured elastic modulus. The results showed that the arterial elastic modulus measured by cylindrical indenter was lower than that measured by spherical indenter. In addition, compared with the calculated results of Sirghi theory, the Sneddon theory, which does not take adhesion forces in account, resulted in slightly larger elastic modulus values. In conclusion, this study provides parametric support for effective measurement of arterial local mechanical properties by millimeter indentation technique.</p>","PeriodicalId":39324,"journal":{"name":"生物医学工程学杂志","volume":"41 3","pages":"469-475"},"PeriodicalIF":0.0,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11208641/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141459796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
生物医学工程学杂志Pub Date : 2024-06-25DOI: 10.7507/1001-5515.202310044
Shuangping Tan, Jun Li, Xiaojuan Zhang, Xinyue Yan, Tong Zhang, Xiali Wu, Ziqiang Liu, Lili Li, Juan Feng, Haibin Han, Guoying Tang, Junzhou Han, Youfeng Deng
{"title":"[A design of interactive review for computer aided diagnosis of pulmonary nodules based on active learning].","authors":"Shuangping Tan, Jun Li, Xiaojuan Zhang, Xinyue Yan, Tong Zhang, Xiali Wu, Ziqiang Liu, Lili Li, Juan Feng, Haibin Han, Guoying Tang, Junzhou Han, Youfeng Deng","doi":"10.7507/1001-5515.202310044","DOIUrl":"10.7507/1001-5515.202310044","url":null,"abstract":"<p><p>Automatic detection of pulmonary nodule based on computer tomography (CT) images can significantly improve the diagnosis and treatment of lung cancer. However, there is a lack of effective interactive tools to record the marked results of radiologists in real time and feed them back to the algorithm model for iterative optimization. This paper designed and developed an online interactive review system supporting the assisted diagnosis of lung nodules in CT images. Lung nodules were detected by the preset model and presented to doctors, who marked or corrected the lung nodules detected by the system with their professional knowledge, and then iteratively optimized the AI model with active learning strategy according to the marked results of radiologists to continuously improve the accuracy of the model. The subset 5-9 dataset of the lung nodule analysis 2016(LUNA16) was used for iteration experiments. The precision, F1-score and MioU indexes were steadily improved with the increase of the number of iterations, and the precision increased from 0.213 9 to 0.565 6. The results in this paper show that the system not only uses deep segmentation model to assist radiologists, but also optimizes the model by using radiologists' feedback information to the maximum extent, iteratively improving the accuracy of the model and better assisting radiologists.</p>","PeriodicalId":39324,"journal":{"name":"生物医学工程学杂志","volume":"41 3","pages":"503-510"},"PeriodicalIF":0.0,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11208657/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141459789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"[Structural design and evaluation of bone remodeling effect of fracture internal fixation implants with time-varying stiffness].","authors":"Hao Sun, Xiaohong Ding, Shipeng Xu, Pengyun Duan, Min Xiong, Heng Zhang","doi":"10.7507/1001-5515.202311037","DOIUrl":"10.7507/1001-5515.202311037","url":null,"abstract":"<p><p>The stiffness of an ideal fracture internal fixation implant should have a time-varying performance, so that the fracture can generate reasonable mechanical stimulation at different healing stages, and biodegradable materials meet this performance. A topology optimization design method for composite structures of fracture internal fixation implants with time-varying stiffness is proposed, considering the time-dependent degradation process of materials. Using relative density and degradation residual rate to describe the distribution and degradation state of two materials with different degradation rates and elastic modulus, a coupled mathematical model of degradation simulation mechanical analysis was established. Biomaterial composite structures were designed based on variable density method to exhibit time-varying stiffness characteristics. Taking the bone plate used for the treatment of tibial fractures as an example, a composite structure bone plate with time-varying stiffness characteristics was designed using the proposed method. The optimization results showed that material 1 with high stiffness formed a columnar support structure, while material 2 with low stiffness was distributed at the degradation boundary and inside. Using a bone remodeling simulation model, the optimized bone plates were evaluated. After 11 months of remodeling, the average elastic modulus of callus using degradable time-varying stiffness plates, titanium alloy plates, and stainless steel plates were 8 634 MPa, 8 521 MPa, and 8 412 MPa, respectively, indicating that the use of degradable time-varying stiffness plates would result in better remodeling effects on the callus.</p>","PeriodicalId":39324,"journal":{"name":"生物医学工程学杂志","volume":"41 3","pages":"595-603"},"PeriodicalIF":0.0,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11208653/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141459795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
生物医学工程学杂志Pub Date : 2024-06-25DOI: 10.7507/1001-5515.202308049
Kaitong Yang, Chenglong Song, Zhihao Ma, Jie Wang
{"title":"[The effect of surface modification strategies on biological activity of titanium implant].","authors":"Kaitong Yang, Chenglong Song, Zhihao Ma, Jie Wang","doi":"10.7507/1001-5515.202308049","DOIUrl":"10.7507/1001-5515.202308049","url":null,"abstract":"<p><p>The surface morphology of titanium metal is an important factor affecting its hydrophilicity and biocompatibility, and exploring the surface treatment strategy of titanium metal is an important way to improve its biocompatibility <b>.</b> In this study <b>,</b> titanium (TA4) was firstly treated by large particle sand blasting and acid etching (SLA) technology, and then the obtained SLA-TA4 was treated by single surface treatments such as alkali-heat, ultraviolet light and plasma bombardment. According to the experimental results, alkali-heat treatment is the best treatment method to improve and maintain surface hydrophilicity of titanium. Then, the nanowire network morphology of titanium surface and its biological property, formed by further surface treatments on the basis of alkali-heat treatment, were investigated. Through the cell adhesion experiment of mouse embryonic osteoblast cells (MC3T3-E1), the ability of titanium material to support cell adhesion and cell spreading was investigated after different surface treatments. The mechanism of biological activity difference of titanium surface formed by different surface treatments was investigated according to the contact angle, pit depth and roughness of the titanium sheet surface. The results showed that the SLA-TA4 titanium sheet after a treatment of alkali heat for 10 h and ultraviolet irradiation for 1 h has the best biological activity and stability. From the perspective of improving surface bioactivity of medical devices, this study has important reference value for relevant researches on surface treatment of titanium implantable medical devices.</p>","PeriodicalId":39324,"journal":{"name":"生物医学工程学杂志","volume":"41 3","pages":"604-611"},"PeriodicalIF":0.0,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11208658/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141459798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}