{"title":"Closure Operators on Complete Almost Distributive Lattices-III","authors":"Calyampudi R. Rao, Venugopalam Undurthi","doi":"10.18778/0138-0680.44.1.2.08","DOIUrl":"https://doi.org/10.18778/0138-0680.44.1.2.08","url":null,"abstract":"In this paper, we prove that the lattice of all closure operators of a complete Almost Distributive Lattice L with fixed maximal element m is dual atomistic. We define the concept of a completely meet-irreducible element in a complete ADL and derive a necessary and sufficient condition for a dual atom of Φ (L) to be complemented.","PeriodicalId":38667,"journal":{"name":"Bulletin of the Section of Logic","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67610022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On Some Applied First-Order Theories which Can Be Represented by Definitions","authors":"V. Shalack","doi":"10.18778/0138-0680.44.1.2.03","DOIUrl":"https://doi.org/10.18778/0138-0680.44.1.2.03","url":null,"abstract":"In the paper we formulate a sufficient criterion in order for the first order theory with finite set of axioms to be represented by definitions in predicate calculus. We prove the corresponding theorem. According to this criterion such theories as the theory of equivalence relation, the theory of partial order and many theories based on the equality relation with finite set of functional and predicate symbols are represented by definitions in the first-order predicate calculus without equality.","PeriodicalId":38667,"journal":{"name":"Bulletin of the Section of Logic","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67609903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An Observation Concerning Porte’s Rule in Modal Logic","authors":"Rohan French, L. Humberstone","doi":"10.18778/0138-0680.44.1.2.04","DOIUrl":"https://doi.org/10.18778/0138-0680.44.1.2.04","url":null,"abstract":"It is well known that no consistent normal modal logic contains (as theorems) both ◊A and ◊¬A (for any formula A). Here we observe that this claim can be strengthened to the following: for any formula A, either no consistent normal modal logic contains ◊A, or else no consistent normal modal logic contains ◊¬A.","PeriodicalId":38667,"journal":{"name":"Bulletin of the Section of Logic","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67609825","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Categorical Abstract Algebraic Logic: Referential π-Institutions","authors":"G. Voutsadakis","doi":"10.18778/0138-0680.44.1.2.05","DOIUrl":"https://doi.org/10.18778/0138-0680.44.1.2.05","url":null,"abstract":"Wojcicki introduced in the late 1970s the concept of a referential semantics for propositional logics. Referential semantics incorporate features of the Kripke possible world semantics for modal logics into the realm of algebraic and matrix semantics of arbitrary sentential logics. A well-known theorem of Wojcicki asserts that a logic has a referential semantics if and only if it is selfextensional. Referential semantics was subsequently studied in detail by Malinowski and the concept of selfextensionality has played, more recently, an important role in the field of abstract algebraic logic in connection with the operator approach to algebraizability. We introduce and review some of the basic definitions and results pertaining to the referential semantics of π-institutions, abstracting corresponding results from the realm of propositional logics.","PeriodicalId":38667,"journal":{"name":"Bulletin of the Section of Logic","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67609871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Non-Fregean Logics of Analytic Equivalence (I)","authors":"A. Biłat","doi":"10.18778/0138-0680.44.1.2.06","DOIUrl":"https://doi.org/10.18778/0138-0680.44.1.2.06","url":null,"abstract":"The identity connective is usually interpreted in non-Fregean logic as an operator representing the identity of situations. This interpretation is related to the modal criterion of the identity of sentence correlates, characteristic of the WT system and some stronger systems. However, this connective can also be interpreted in a different way – as an operator representing the identity of propositions. The “propositional” interpretation is in turn associated with the modal-contents criterion of the identity of sentence correlates. This begs the question of whether there is a system of non-Fregean logic, providing an adequate formalization of this criterion. The aim of the paper is to systematize the metalogical and philosophical context of the issue and to point to a system that provides its solution.","PeriodicalId":38667,"journal":{"name":"Bulletin of the Section of Logic","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67609922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Non-Fregean Logics of Analytic Equivalence (II)","authors":"A. Biłat","doi":"10.18778/0138-0680.44.1.2.07","DOIUrl":"https://doi.org/10.18778/0138-0680.44.1.2.07","url":null,"abstract":"This paper presents the main assumptions of Andrzej Grzegorczyk’s last research project concerning the logic of synonymity. It shows that the basis of logic of analytic equivalence, presented in the first part of the work, fully corresponds with these assumptions.","PeriodicalId":38667,"journal":{"name":"Bulletin of the Section of Logic","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67609977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Unifiability and Structural Completeness in Relation Algebras and in Products of Modal Logic S5","authors":"W. Dzik, Ben Wrobel","doi":"10.18778/0138-0680.44.1.2.01","DOIUrl":"https://doi.org/10.18778/0138-0680.44.1.2.01","url":null,"abstract":"Unifiability of terms (and formulas) and structural completeness in the variety of relation algebras RA and in the products of modal logic S5 is investigated. Nonunifiable terms (formulas) which are satisfiable in varieties (in logics) are exhibited. Consequently, RA and products of S5 as well as representable diagonal-free n-dimensional cylindric algebras, RDfn, are almost structurally complete but not structurally complete. In case of S5n a basis for admissible rules and the form of all passive rules are provided.","PeriodicalId":38667,"journal":{"name":"Bulletin of the Section of Logic","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67609345","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}