{"title":"模态逻辑中波特规则的观察","authors":"Rohan French, L. Humberstone","doi":"10.18778/0138-0680.44.1.2.04","DOIUrl":null,"url":null,"abstract":"It is well known that no consistent normal modal logic contains (as theorems) both ◊A and ◊¬A (for any formula A). Here we observe that this claim can be strengthened to the following: for any formula A, either no consistent normal modal logic contains ◊A, or else no consistent normal modal logic contains ◊¬A.","PeriodicalId":38667,"journal":{"name":"Bulletin of the Section of Logic","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"An Observation Concerning Porte’s Rule in Modal Logic\",\"authors\":\"Rohan French, L. Humberstone\",\"doi\":\"10.18778/0138-0680.44.1.2.04\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is well known that no consistent normal modal logic contains (as theorems) both ◊A and ◊¬A (for any formula A). Here we observe that this claim can be strengthened to the following: for any formula A, either no consistent normal modal logic contains ◊A, or else no consistent normal modal logic contains ◊¬A.\",\"PeriodicalId\":38667,\"journal\":{\"name\":\"Bulletin of the Section of Logic\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Section of Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18778/0138-0680.44.1.2.04\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Arts and Humanities\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Section of Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18778/0138-0680.44.1.2.04","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Arts and Humanities","Score":null,"Total":0}
An Observation Concerning Porte’s Rule in Modal Logic
It is well known that no consistent normal modal logic contains (as theorems) both ◊A and ◊¬A (for any formula A). Here we observe that this claim can be strengthened to the following: for any formula A, either no consistent normal modal logic contains ◊A, or else no consistent normal modal logic contains ◊¬A.