{"title":"An Observation Concerning Porte’s Rule in Modal Logic","authors":"Rohan French, L. Humberstone","doi":"10.18778/0138-0680.44.1.2.04","DOIUrl":null,"url":null,"abstract":"It is well known that no consistent normal modal logic contains (as theorems) both ◊A and ◊¬A (for any formula A). Here we observe that this claim can be strengthened to the following: for any formula A, either no consistent normal modal logic contains ◊A, or else no consistent normal modal logic contains ◊¬A.","PeriodicalId":38667,"journal":{"name":"Bulletin of the Section of Logic","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Section of Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18778/0138-0680.44.1.2.04","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Arts and Humanities","Score":null,"Total":0}
引用次数: 4
Abstract
It is well known that no consistent normal modal logic contains (as theorems) both ◊A and ◊¬A (for any formula A). Here we observe that this claim can be strengthened to the following: for any formula A, either no consistent normal modal logic contains ◊A, or else no consistent normal modal logic contains ◊¬A.