{"title":"Structural behavior of Lightweight and High strength Layered Hollow Core Slabs","authors":"Asmaa Ghamry, Ahmed Esia, Louay Aboul-Nour","doi":"10.3221/igf-esis.63.13","DOIUrl":"https://doi.org/10.3221/igf-esis.63.13","url":null,"abstract":"A new technique of Layered Hollow Core Slab (LHCS) has been used to obtain a slab with an optimum weight-to-strength ratio. Specimens with a 90 mm top layer of High Strength Concrete (HSC) and a 90 mm bottom layer of Lightweight Aggregate Concrete (LWAC) were examined. Nine full-scale slabs with dimensions of 1600* 450* 180 mm were tested under a 4-point loading test. The %core, a/d, RFT ratio, and connection method were the different studied parameters. A push-out test was conducted on triplet specimens to study the bond strength at the interface between HSC jacket and LWAC cubes using bond agent material or shear dowels, or without treatment, to determine which method of them is suitable for connecting the two layers of the tested slabs. Load, deflection, ductility, strain, crack pattern, and mode of failure were studied. The results indicate that ultimate strength is enhanced with decreasing a/d and %core and with an increasing RFT ratio of the LHCS specimens. Using shear dowels ensures an efficient bond between the two layers of the tested slabs. ANSYS program used for modelling the slab. The numerical study accepted the experimental data with a variation of less than 10% for all slabs. ","PeriodicalId":38546,"journal":{"name":"Frattura ed Integrita Strutturale","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42881289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Brotzu, S. Natali, Zortea Laura, De Filippo Barbara
{"title":"High Entropy Cantor Alloys (HEAs) modification induced by tungsten alligation, heat treatment and deep cold plastic deformation","authors":"A. Brotzu, S. Natali, Zortea Laura, De Filippo Barbara","doi":"10.3221/igf-esis.63.24","DOIUrl":"https://doi.org/10.3221/igf-esis.63.24","url":null,"abstract":"High Entropy Alloys (HEAs) is a unique class of materials that combine particular properties in a large-scale of temperatures, able to guarantee new unexplored materials and alloys with several potentially engineering applications (i.e. space and aerospace industries). As promising structural materials, HEAs consist of five or more principal elements. As a consequence of the monophasic microstructure which usually characterizes HEAs, these alloys offer an excellent combination of strength, strain hardening ability, good plasticity, ductility and fracture toughness especially at cryogenic temperatures better than the existing conventional metals and alloys. For the above reasons, the present work deals with Classic Cantor alloy, a well-known CoCrFeMnNi HEA, where mechanical properties were improved using low cost casting techniques and a combination of different metallurgical methodologies (heat treatment, cold working and adding alloying elements). A promising alloy element, tungsten, was used in the experimentation where mechanical and microstructural characterization were performed using different techniques","PeriodicalId":38546,"journal":{"name":"Frattura ed Integrita Strutturale","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47916772","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Analysis of the resistance to crack propagation in SENT test specimens printed in ABS using parallel or crossed filaments between layers","authors":"O. Aourik, A. Chouaf, M. Othmani","doi":"10.3221/igf-esis.63.19","DOIUrl":"https://doi.org/10.3221/igf-esis.63.19","url":null,"abstract":"Additive manufacturing techniques continue to develop and cover all industrial fields. However, the performances of aspect and mechanical behavior of the parts obtained by this process remain to be mastered and are still the subject of current research works. Among these performances, the one corresponding to the resistance to the propagation of cracks. In order to improve this very interesting property in various industrial fields, it is desirable to master the understanding of crack propagation in this type of structure obtained by 3D printing. The objective of this paper is to analyze and understand the effect of the adopted raster angle on the crack propagation in SENT specimens obtained by FDM in ABS (Acrylonitrile-Butadiene-Styrene). Two approaches were developed: one is experimental to determine the critical stress intensity factor KIC and the other is numerical to predict the possible paths of crack propagation.","PeriodicalId":38546,"journal":{"name":"Frattura ed Integrita Strutturale","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47456294","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
K. R. Suchendra, M. Sreenivasa reddy, M. Ravikumar
{"title":"Influence of Quenching Agents on Mechanical, Wear, and Fracture Characteristics of Al2O3 / MoS2 Reinforced Al-6061 Hybrid Metal Matrix Composite (MMCs)","authors":"K. R. Suchendra, M. Sreenivasa reddy, M. Ravikumar","doi":"10.3221/igf-esis.63.12","DOIUrl":"https://doi.org/10.3221/igf-esis.63.12","url":null,"abstract":"Aluminium (Al) based composites enhance the mechanical and wear behavior by heat treatment. The quenching factors like cooling agent, cooling rate and temperature of cooling are expected to influence the hardness, tensile, and wear behavior of the Al MMCs. This research shows the outcomes of a sequence of experiments to find the wear and mechanical behavior of the Al6061-Al2O3-MoS2 hybrid composites are quenched with different quenching agents. Hardening of the developed hybrid composites was carried out at 510ºC for the time period of 2 hours. Later, the same composite samples were quenched in ice cubes and water separately. Finally, age-hardening was done at 180ºC temperature for 4 hours and then the samples were cooled under room temperature. Heat treated hybrid composites were subjected to evaluate the hardness, tensile, and wear behavior. The outcomes reveal that the heat treatment significantly enhances the wear and mechanical behavior of hybrid composites. High mechanical strength and improved wear characteristics were observed in the hybrid composites which were quenched using ice cubes. The fractured surface of the tensile test samples and the wornout surface of wear test specimens were studied using a SEM analysis.","PeriodicalId":38546,"journal":{"name":"Frattura ed Integrita Strutturale","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47345523","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On local strength of a spherical vessel with pits distributed along the equator","authors":"D.D. Okulova, L. Almazova, O. Sedova, Y. Pronina","doi":"10.3221/igf-esis.63.08","DOIUrl":"https://doi.org/10.3221/igf-esis.63.08","url":null,"abstract":"The effect of multiple shallow corrosion pits on the strength of a spherical vessel subjected to internal pressure is studied. The pits are considered both randomly and evenly distributed along the equator on the outer surface of the vessel. The dependencies of the stress concentration factor on the number of the pits are compared for linearly elastic and elastic-plastic material with hardening. The behavior of the vessels made of elastic and elastoplastic materials turned out to be qualitatively different. The approximation of periodic pits arrangement is discussed.","PeriodicalId":38546,"journal":{"name":"Frattura ed Integrita Strutturale","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45684921","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Structural behavior of damaged reinforced concrete beams under static cyclic loading","authors":"A. Elbaz, H. Marzouk, K. Heiza, O. Elnawawy","doi":"10.3221/igf-esis.63.20","DOIUrl":"https://doi.org/10.3221/igf-esis.63.20","url":null,"abstract":"Bridges are regarded as one of the most important components of transportation infrastructure. More and more repairs, inspections, alterations, and construction processes are required to maintain safe usage due to increasing travel demands in addition to bridge infrastructure aging. In this paper, we will discuss the experimental investigation using five reinforced concrete beams to evaluate the effect of making damage to experimental beams under static cyclic loading to investigate their ductility and energy dissipation. The defective parameters taken into consideration in the experimental program were the gap in the concrete mold and mild steel at the middle bottom reinforcement. All tested specimens had the same cross-sectional dimensions. The concrete dimensions of the beams were 200 mm in width and 300 mm in height, and the beam's length was selected to be 2200 mm, having a clear span of 2000 mm between the supports, they were tested in positive bending using a 3-point bending load system. According to the results, when (RC) beams were subjected to any of the mentioned types of damage, they showed a significant decrease in ultimate capacities ranging from 3.03% to 19.31%. The ANSYS model shows an average difference with the experimental program within 4 % as an acceptable agreement.","PeriodicalId":38546,"journal":{"name":"Frattura ed Integrita Strutturale","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46425800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Akshansh Mishra, Vijaykumar S Jatti, Nitin K Khedkar, Rahul B. Dhabale, Ashwini V Jatti
{"title":"Computer Vision Algorithm for the detection of fracture cracks in Oil Hardening Non-Shrinking (OHNS) die steel after machining process","authors":"Akshansh Mishra, Vijaykumar S Jatti, Nitin K Khedkar, Rahul B. Dhabale, Ashwini V Jatti","doi":"10.3221/igf-esis.63.18","DOIUrl":"https://doi.org/10.3221/igf-esis.63.18","url":null,"abstract":"A variant of neural network for processing with images is a convolutional neural network (CNN). This type of neural network receives input from an image and extracts features from the image while also providing learnable parameters to effectively do the classification, detection, and many other tasks. In the present work, U-Net convolutional neural network is implemented on Jupyter platform by using Python programming for fracture surface image segmentation in Oil Hardening Non-Shrinking (OHNS) die steel after the machining process. The results showed that the fracture cracks can be validated by testing with higher accuracy.","PeriodicalId":38546,"journal":{"name":"Frattura ed Integrita Strutturale","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45071646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ibrahim S. I. Harba, Abdulkhalik J. Abdulridha, Ahmed A. M. AL-Shaar
{"title":"Numerical Analysis of Reinforced Concrete Circular Columns Strengthening With CFRP under Concentric and Eccentric Loadings","authors":"Ibrahim S. I. Harba, Abdulkhalik J. Abdulridha, Ahmed A. M. AL-Shaar","doi":"10.3221/igf-esis.63.16","DOIUrl":"https://doi.org/10.3221/igf-esis.63.16","url":null,"abstract":"The purpose of this study is to explore the numerical behavior of circular RC short columns with different degrees of confinement with CFRP (0%, 25%, 50%, and 100%) wraps under concentric and eccentric loading. The numerical analysis carried out by using an improved concrete plastic-damage model (CDPM) implemented in ABAQUS software for finite element (FE) analysis. The FE model simulated a total of twenty-four numerical specimens. The findings were matched to published experimental test results in the literature. The findings of the FE model and the experimental data were good similar. As a consequence, the model was found to be valid. The numerical results shows that as load eccentricity increased, the load carrying capacity of columns decreased for unconfined specimens, whereas the decline in strength for confined specimens becomes limited as the degrees of confinement ratio increased. In addition, increasing the CFRP confinement ratio improves the column's load-bearing capability at the same load eccentricity.","PeriodicalId":38546,"journal":{"name":"Frattura ed Integrita Strutturale","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43983442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Santhosh Gotagunaki, V. S. Mudakappanavar, R. Suresh
{"title":"Investigation on Microstructure and Tensile Fractography of RE Oxides (CeO2/Y2O3) Reinforced AZ91D Magnesium Matrix Composites","authors":"Santhosh Gotagunaki, V. S. Mudakappanavar, R. Suresh","doi":"10.3221/igf-esis.63.10","DOIUrl":"https://doi.org/10.3221/igf-esis.63.10","url":null,"abstract":"The current work aims to investigate the mechanical properties of rare oxide reinforced Mg alloy based MMCs. Magnesium matrix considered in the study is AZ91D alloy, whereas rare earth oxides reinforced were CeO2 and Y2O3. The Y2O3 particulate reinforcement percentage was varied from 1 to 3% in the steps of 1% to study its influence on mechanical properties of MMCs. Stir casting route was adopted to fabricate sample for study. Microstructure analysis illustrated the uniform distribution of particulate in matrix alloys. The obtained results revealed the enhanced mechanical properties such as tensile strength, yield strength, elongation and hardness of MMCs due to increased percentage of reinforcement. Fractography analysis of fracture surfaces demonstrated the microcracks and cleavage were dominant in pure alloy. While particle debonding, extensive plastics deformation were prominent in-addition to microcracks in MMCs.","PeriodicalId":38546,"journal":{"name":"Frattura ed Integrita Strutturale","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47862846","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Artificial neural network based delamination prediction in composite plates using vibration signals","authors":"T. Sreekanth, M. Senthilkumar, S. Manikanta Reddy","doi":"10.3221/igf-esis.63.04","DOIUrl":"https://doi.org/10.3221/igf-esis.63.04","url":null,"abstract":"Dynamic loading on composite components may induce damages such as cracks, delaminations, etc. and development of an early damage detection technique for delaminations is one of the most important aspects in ensuring the integrity and safety of composite components. The presence of damages such as delaminations on the composites reduces its stiffness and further changes the dynamic behaviour of the structures. As the loss in stiffness leads to changes in the natural frequencies, mode shapes, and other aspects of the structure, vibration analysis may be the ideal technique to employ in this case. In this research work, the supervised feed-forward multilayer back-propagation Artificial Neural Network (ANN) is used to determine the position and area of delaminations in GFRP plates using changes in natural frequencies as inputs. The natural frequencies were obtained by finite element analysis and results are validated by experimentation. The findings show that the suggested technique can satisfactorily estimate the location and extent of delaminations in composite plates.","PeriodicalId":38546,"journal":{"name":"Frattura ed Integrita Strutturale","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47293067","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}