Akshansh Mishra, Vijaykumar S Jatti, Nitin K Khedkar, Rahul B. Dhabale, Ashwini V Jatti
{"title":"油硬化不收缩模具钢加工后断裂裂纹检测的计算机视觉算法","authors":"Akshansh Mishra, Vijaykumar S Jatti, Nitin K Khedkar, Rahul B. Dhabale, Ashwini V Jatti","doi":"10.3221/igf-esis.63.18","DOIUrl":null,"url":null,"abstract":"A variant of neural network for processing with images is a convolutional neural network (CNN). This type of neural network receives input from an image and extracts features from the image while also providing learnable parameters to effectively do the classification, detection, and many other tasks. In the present work, U-Net convolutional neural network is implemented on Jupyter platform by using Python programming for fracture surface image segmentation in Oil Hardening Non-Shrinking (OHNS) die steel after the machining process. The results showed that the fracture cracks can be validated by testing with higher accuracy.","PeriodicalId":38546,"journal":{"name":"Frattura ed Integrita Strutturale","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2022-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computer Vision Algorithm for the detection of fracture cracks in Oil Hardening Non-Shrinking (OHNS) die steel after machining process\",\"authors\":\"Akshansh Mishra, Vijaykumar S Jatti, Nitin K Khedkar, Rahul B. Dhabale, Ashwini V Jatti\",\"doi\":\"10.3221/igf-esis.63.18\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A variant of neural network for processing with images is a convolutional neural network (CNN). This type of neural network receives input from an image and extracts features from the image while also providing learnable parameters to effectively do the classification, detection, and many other tasks. In the present work, U-Net convolutional neural network is implemented on Jupyter platform by using Python programming for fracture surface image segmentation in Oil Hardening Non-Shrinking (OHNS) die steel after the machining process. The results showed that the fracture cracks can be validated by testing with higher accuracy.\",\"PeriodicalId\":38546,\"journal\":{\"name\":\"Frattura ed Integrita Strutturale\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frattura ed Integrita Strutturale\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3221/igf-esis.63.18\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frattura ed Integrita Strutturale","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3221/igf-esis.63.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Computer Vision Algorithm for the detection of fracture cracks in Oil Hardening Non-Shrinking (OHNS) die steel after machining process
A variant of neural network for processing with images is a convolutional neural network (CNN). This type of neural network receives input from an image and extracts features from the image while also providing learnable parameters to effectively do the classification, detection, and many other tasks. In the present work, U-Net convolutional neural network is implemented on Jupyter platform by using Python programming for fracture surface image segmentation in Oil Hardening Non-Shrinking (OHNS) die steel after the machining process. The results showed that the fracture cracks can be validated by testing with higher accuracy.