Computer Vision Algorithm for the detection of fracture cracks in Oil Hardening Non-Shrinking (OHNS) die steel after machining process

IF 1.2 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
Akshansh Mishra, Vijaykumar S Jatti, Nitin K Khedkar, Rahul B. Dhabale, Ashwini V Jatti
{"title":"Computer Vision Algorithm for the detection of fracture cracks in Oil Hardening Non-Shrinking (OHNS) die steel after machining process","authors":"Akshansh Mishra, Vijaykumar S Jatti, Nitin K Khedkar, Rahul B. Dhabale, Ashwini V Jatti","doi":"10.3221/igf-esis.63.18","DOIUrl":null,"url":null,"abstract":"A variant of neural network for processing with images is a convolutional neural network (CNN). This type of neural network receives input from an image and extracts features from the image while also providing learnable parameters to effectively do the classification, detection, and many other tasks. In the present work, U-Net convolutional neural network is implemented on Jupyter platform by using Python programming for fracture surface image segmentation in Oil Hardening Non-Shrinking (OHNS) die steel after the machining process. The results showed that the fracture cracks can be validated by testing with higher accuracy.","PeriodicalId":38546,"journal":{"name":"Frattura ed Integrita Strutturale","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2022-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frattura ed Integrita Strutturale","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3221/igf-esis.63.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A variant of neural network for processing with images is a convolutional neural network (CNN). This type of neural network receives input from an image and extracts features from the image while also providing learnable parameters to effectively do the classification, detection, and many other tasks. In the present work, U-Net convolutional neural network is implemented on Jupyter platform by using Python programming for fracture surface image segmentation in Oil Hardening Non-Shrinking (OHNS) die steel after the machining process. The results showed that the fracture cracks can be validated by testing with higher accuracy.
油硬化不收缩模具钢加工后断裂裂纹检测的计算机视觉算法
用于处理图像的神经网络的一个变体是卷积神经网络(CNN)。这种类型的神经网络接收来自图像的输入,并从图像中提取特征,同时还提供可学习的参数,以有效地进行分类、检测和许多其他任务。在Jupyter平台上,利用Python编程实现U-Net卷积神经网络,对油硬化不收缩(OHNS)模具钢加工后的断口图像进行分割。结果表明,该方法能够以较高的精度对断裂裂纹进行验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Frattura ed Integrita Strutturale
Frattura ed Integrita Strutturale Engineering-Mechanical Engineering
CiteScore
3.40
自引率
0.00%
发文量
114
审稿时长
6 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信