Biomolecular Concepts最新文献

筛选
英文 中文
A commentary on the inhibition of human TPC2 channel by the natural flavonoid naringenin: Methods, experiments, and ideas. 天然类黄酮柚皮素抑制人TPC2通道的研究进展:方法、实验与思路。
Biomolecular Concepts Pub Date : 2023-01-01 DOI: 10.1515/bmc-2022-0036
Velia Minicozzi, Tianwen Qi, Antonella Gradogna, Marina Pozzolini, Stefan Milenkovic, Antonio Filippini, Matteo Ceccarelli, Armando Carpaneto
{"title":"A commentary on the inhibition of human TPC2 channel by the natural flavonoid naringenin: Methods, experiments, and ideas.","authors":"Velia Minicozzi,&nbsp;Tianwen Qi,&nbsp;Antonella Gradogna,&nbsp;Marina Pozzolini,&nbsp;Stefan Milenkovic,&nbsp;Antonio Filippini,&nbsp;Matteo Ceccarelli,&nbsp;Armando Carpaneto","doi":"10.1515/bmc-2022-0036","DOIUrl":"https://doi.org/10.1515/bmc-2022-0036","url":null,"abstract":"<p><p>Human endo-lysosomes possess a class of proteins called TPC channels on their membrane, which are essential for proper cell functioning. This protein family can be functionally studied by expressing them in plant vacuoles. Inhibition of hTPC activity by naringenin, one of the main flavonoids present in the human diet, has the potential to be beneficial in severe human diseases such as solid tumor development, melanoma, and viral infections. We attempted to identify the molecular basis of the interaction between hTPC2 and naringenin, using ensemble docking on molecular dynamics (MD) trajectories, but the specific binding site remains elusive, posing a challenge that could potentially be addressed in the future by increased computational power in MD and the combined use of microscopy techniques such as cryo-EM.</p>","PeriodicalId":38392,"journal":{"name":"Biomolecular Concepts","volume":"14 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10199827","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of model membranes on lysozyme amyloid aggregation. 模型膜对溶菌酶淀粉样蛋白聚集的影响。
Biomolecular Concepts Pub Date : 2023-01-01 DOI: 10.1515/bmc-2022-0034
Annaclaudia Burrelli, Paolo Moretti, Yuri Gerelli, Maria Grazia Ortore
{"title":"Effects of model membranes on lysozyme amyloid aggregation.","authors":"Annaclaudia Burrelli,&nbsp;Paolo Moretti,&nbsp;Yuri Gerelli,&nbsp;Maria Grazia Ortore","doi":"10.1515/bmc-2022-0034","DOIUrl":"https://doi.org/10.1515/bmc-2022-0034","url":null,"abstract":"<p><p>The study of the interaction between lipid membranes and amyloidogenic peptides is a turning point for understanding the processes involving the cytotoxicity of peptides involved in neurodegenerative diseases. In this work, we perform an experimental study of model membrane-lysozyme interaction to understand how the formation of amyloid fibrils can be affected by the presence of polar and zwitterionic phospholipid molecules (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine [POPC] and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol [POPG]). The study was conducted above and below the critical micellar concentration (CMC) using dynamic light scattering (DLS), atomic force microscopy (AFM), UV-Vis spectrophotometry, and the quartz crystal microbalance (QCM). Our results show that the presence of phospholipids appears to be a factor favoring the formation of amyloid aggregates. Spectrophotometric and DLS data revealed that the quantity of <math><mi>β</mi></math> -structure increases in the presence of POPG and POPC at different concentrations. The presence of POPG and POPC increases the speed of the nucleation process, without altering the overall structures of the fibrillar final products.</p>","PeriodicalId":38392,"journal":{"name":"Biomolecular Concepts","volume":"14 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9946293","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Setting up multicolour TIRF microscopy down to the single molecule level. 设置多色TIRF显微镜到单分子水平。
Biomolecular Concepts Pub Date : 2023-01-01 DOI: 10.1515/bmc-2022-0032
Chiara Schirripa Spagnolo, Stefano Luin
{"title":"Setting up multicolour TIRF microscopy down to the single molecule level.","authors":"Chiara Schirripa Spagnolo,&nbsp;Stefano Luin","doi":"10.1515/bmc-2022-0032","DOIUrl":"https://doi.org/10.1515/bmc-2022-0032","url":null,"abstract":"<p><p>Investigating biological mechanisms in ever greater detail requires continuous advances in microscopy techniques and setups. Total internal reflection fluorescence (TIRF) microscopy is a well-established technique for visualizing processes on the cell membrane. TIRF allows studies down to the single molecule level, mainly in single-colour applications. Instead, multicolour setups are still limited. Here, we describe our strategies for implementing a multi-channel TIRF microscopy system capable of simultaneous two-channel excitation and detection, starting from a single-colour commercial setup. First, we report some applications at high molecule density and then focus on the challenges we faced for achieving the single molecule level simultaneously in different channels, showing that rigorous optimizations on the setup are needed to increase its sensitivity up to this point, from camera setting to background minimization. We also discuss our strategies regarding crucial points of fluorescent labelling for this type of experiment: labelling strategy, kind of probe, efficiency, and orthogonality of the reaction, all of which are aspects that can influence the achievable results. This work may provide useful guidelines for setting up advanced single-molecule multi-channel TIRF experiments to obtain insights into interaction mechanisms on the cell membrane of living cells.</p>","PeriodicalId":38392,"journal":{"name":"Biomolecular Concepts","volume":"14 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9813081","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Dipalmitoyl-phosphatidylserine-filled cationic maltodextrin nanoparticles exhibit enhanced efficacy for cell entry and intracellular protein delivery in phagocytic THP-1 cells. 双棕榈酰磷脂酰丝氨酸填充的阳离子麦芽糖糊精纳米颗粒在吞噬THP-1细胞中表现出增强的细胞进入和细胞内蛋白质递送的功效。
Biomolecular Concepts Pub Date : 2023-01-01 DOI: 10.1515/bmc-2022-0029
Clément Brinkhuizen, Damien Shapman, Alexis Lebon, Magalie Bénard, Meryem Tardivel, Laurent Dubuquoy, Ludovic Galas, Rodolphe Carpentier
{"title":"Dipalmitoyl-phosphatidylserine-filled cationic maltodextrin nanoparticles exhibit enhanced efficacy for cell entry and intracellular protein delivery in phagocytic THP-1 cells.","authors":"Clément Brinkhuizen,&nbsp;Damien Shapman,&nbsp;Alexis Lebon,&nbsp;Magalie Bénard,&nbsp;Meryem Tardivel,&nbsp;Laurent Dubuquoy,&nbsp;Ludovic Galas,&nbsp;Rodolphe Carpentier","doi":"10.1515/bmc-2022-0029","DOIUrl":"https://doi.org/10.1515/bmc-2022-0029","url":null,"abstract":"<p><p>Vaccination through the upper respiratory tract is a promising strategy, and particulate antigens, such as antigens associated with nanoparticles, triggered a stronger immune response than the sole antigens. Cationic maltodextrin-based nanoparticles loaded with phosphatidylglycerol (NPPG) are efficient for intranasal vaccination but non-specific to trigger immune cells. Here we focused on phosphatidylserine (PS) receptors, specifically expressed by immune cells including macrophages, to improve nanoparticle targeting through an efferocytosis-like mechanism. Consequently, the lipids associated with NPPG have been substituted by PS to generate cationic maltodextrin-based nanoparticles with dipalmitoyl-phosphatidylserine (NPPS). Both NPPS and NPPG exhibited similar physical characteristics and intracellular distribution in THP-1 macrophages. NPPS cell entry was faster and higher (two times more) than NPPG. Surprisingly, competition of PS receptors with phospho-L-serine did not alter NPPS cell entry and annexin V did not preferentially interact with NPPS. Although the protein association is similar, NPPS delivered more proteins than NPPG in cells. On the contrary, the proportion of mobile nanoparticles (50%), the movement speed of nanoparticles (3 µm/5 min), and protein degradation kinetics in THP-1 were not affected by lipid substitution. Together, the results indicate that NPPS enter cells and deliver protein better than NPPG, suggesting that modification of the lipids of cationic maltodextrin-based nanoparticles may be a useful strategy to enhance nanoparticle efficacy for mucosal vaccination.</p>","PeriodicalId":38392,"journal":{"name":"Biomolecular Concepts","volume":"14 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9686476","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The effects of supplementation of Nannochloropsis oculata microalgae on biochemical, inflammatory and antioxidant responses in diabetic rats. 补充纳米绿藻对糖尿病大鼠生化、炎症和抗氧化反应的影响。
Biomolecular Concepts Pub Date : 2022-10-31 eCollection Date: 2022-01-01 DOI: 10.1515/bmc-2022-0025
Ali Fereidouni, Ali Khaleghian, Neda Mousavi-Niri, Nasrollah Moradikor
{"title":"The effects of supplementation of <i>Nannochloropsis oculata</i> microalgae on biochemical, inflammatory and antioxidant responses in diabetic rats.","authors":"Ali Fereidouni,&nbsp;Ali Khaleghian,&nbsp;Neda Mousavi-Niri,&nbsp;Nasrollah Moradikor","doi":"10.1515/bmc-2022-0025","DOIUrl":"https://doi.org/10.1515/bmc-2022-0025","url":null,"abstract":"<p><p>Diabetes is accompanied by inflammation and oxidation. Supplementation of anti-inflammatory and antioxidant compounds can prevent the progression of diabetes. This study aimed to investigate the effects of supplementation of <i>Nannochloropsis oculata</i> microalgae (NOM) on the inflammatory and antioxidant responses in diabetic rats. Sixty male rats were divided into six groups as diabetic and non-diabetic rats receiving 0, 10 and 20 mg/kg of body weight of NOM daily for 21 days. Body weight, the serum concentrations of insulin and glucose and the tissue concentrations of interleukin-1β (IL-1β), tumor necrosis factor-alpha (TNF-α), nuclear factor kappa B (NF-κB), interleukin-6 (IL-6), malondialdehyde (MDA), ferric reducing antioxidant power (FRAP), superoxide dismutase (SOD), glutathione peroxidase (GPx) were assessed. The results showed that induction of diabetes significantly reduced the body weight, the serum concentrations of insulin and the tissue concentrations of SOD, FRAP and GPx while increasing the concentrations of glucose, MDA, IL-1β, IL-6, NF-κB and TNF-α. Daily oral administration of NOM (10 and 20 mg/kg) significantly maintained the body weight, the serum concentrations of insulin and the tissue concentrations of SOD, FRAP and GPx while preventing the increase in the concentrations of glucose, MDA, IL-1β and TNF-α. In conclusion, diabetes caused inflammation and oxidation while NOM worked as a natural anti-inflammatory and antioxidant compound.</p>","PeriodicalId":38392,"journal":{"name":"Biomolecular Concepts","volume":" ","pages":"314-321"},"PeriodicalIF":0.0,"publicationDate":"2022-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40657886","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Insights into functional connectivity in mammalian signal transduction pathways by pairwise comparison of protein interaction partners of critical signaling hubs. 通过对关键信号中枢蛋白相互作用伙伴的两两比较,深入了解哺乳动物信号转导途径的功能连接。
Biomolecular Concepts Pub Date : 2022-09-01 eCollection Date: 2022-01-01 DOI: 10.1515/bmc-2022-0023
Chilakamarti V Ramana
{"title":"Insights into functional connectivity in mammalian signal transduction pathways by pairwise comparison of protein interaction partners of critical signaling hubs.","authors":"Chilakamarti V Ramana","doi":"10.1515/bmc-2022-0023","DOIUrl":"https://doi.org/10.1515/bmc-2022-0023","url":null,"abstract":"<p><p>Growth factors and cytokines activate signal transduction pathways and regulate gene expression in eukaryotes. Intracellular domains of activated receptors recruit several protein kinases as well as transcription factors that serve as platforms or hubs for the assembly of multi-protein complexes. The signaling hubs involved in a related biologic function often share common interaction proteins and target genes. This functional connectivity suggests that a pairwise comparison of protein interaction partners of signaling hubs and network analysis of common partners and their expression analysis might lead to the identification of critical nodes in cellular signaling. A pairwise comparison of signaling hubs across several related pathways might reveal novel signaling modules. Analysis of <u>p</u>rotein <u>i</u>nteraction <u>c</u>onnectome by <u>V</u>enn (PIC-Venn) of transcription factors STAT1, STAT3, NFKB1, RELA, FOS, and JUN, and their common interaction network suggested that BRCA1 and TSC22D3 function as critical nodes in immune responses by connecting the signaling hubs into signaling modules. Transcriptional regulation of critical hubs may play a major role in the lung epithelial cells in response to SARS-CoV-2 and in COVID-19 patients. Mutations and differential expression levels of these critical nodes and modules in pathological conditions might deregulate signaling pathways and their target genes involved in inflammation. Biological connectivity emerges from the structural connectivity of interaction networks across several signaling hubs in related pathways. The main objectives of this study are to identify critical hubs, critical nodes, and modules involved in the signal transduction pathways of innate and adaptive immunity. Application of PIC-Venn to several signaling hubs might reveal novel nodes and modules that can be targeted by small regulatory molecules to simultaneously activate or inhibit cell signaling in health and disease.</p>","PeriodicalId":38392,"journal":{"name":"Biomolecular Concepts","volume":" ","pages":"298-313"},"PeriodicalIF":0.0,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40336732","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Oxygen diffusion pathways in mutated forms of a LOV photoreceptor from Methylobacterium radiotolerans: A molecular dynamics study. 放射耐受甲基杆菌LOV光感受器突变形式中的氧扩散途径:分子动力学研究。
Biomolecular Concepts Pub Date : 2022-03-25 DOI: 10.1515/bmc-2022-0013
Rocco Zerlotti, Aba Losi, Eugenia Polverini
{"title":"Oxygen diffusion pathways in mutated forms of a LOV photoreceptor from <i>Methylobacterium radiotolerans</i>: A molecular dynamics study.","authors":"Rocco Zerlotti,&nbsp;Aba Losi,&nbsp;Eugenia Polverini","doi":"10.1515/bmc-2022-0013","DOIUrl":"https://doi.org/10.1515/bmc-2022-0013","url":null,"abstract":"<p><p><i>Mr</i>4511 from <i>Methylobacterium radiotolerans</i> is a photoreceptor of the light, oxygen voltage (LOV) family, binding flavin mononucleotide (FMN) as a chromophore. It exhibits the prototypical LOV photocycle, with the reversible formation of an FMN-Cys71 adduct via fast decay of the FMN triplet state. <i>Mr</i>4511 has high potential as a photosensitiser for singlet oxygen (SO) upon mutation of C71. <i>Mr</i>4511-C71S shows a triplet lifetime (<i>τ</i> <sub>T</sub>) of several hundreds of microseconds, ensuring efficient energy transfer to dioxygen to form SO. In this work, we have explored the potential diffusion pathways for dioxygen within <i>Mr</i>4511 using molecular dynamics (MD) simulations. The structural model of wild-type (wt) <i>Mr</i>4511 showed a dimeric structure stabilised by a strong leucine zipper at the two C-terminal helical ends. We then introduced <i>in silico</i> the C71S mutation and analysed transient and persistent oxygen channels. MD simulations indicate that the chromophore binding site is highly accessible to dioxygen. Mutations that might favour SO generation were designed based on their position with respect to FMN and the oxygen channels. In particular, the C71S-Y61T and C71S-Y61S variants showed an increased diffusion and persistence of oxygen molecules inside the binding cavity.</p>","PeriodicalId":38392,"journal":{"name":"Biomolecular Concepts","volume":" ","pages":"164-174"},"PeriodicalIF":0.0,"publicationDate":"2022-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40328291","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Calcium signaling in prostate cancer cells of increasing malignancy. 恶性程度增加的前列腺癌细胞中的钙信号。
Biomolecular Concepts Pub Date : 2022-03-24 DOI: 10.1515/bmc-2022-0012
Carla Marchetti
{"title":"Calcium signaling in prostate cancer cells of increasing malignancy.","authors":"Carla Marchetti","doi":"10.1515/bmc-2022-0012","DOIUrl":"https://doi.org/10.1515/bmc-2022-0012","url":null,"abstract":"<p><p>Calcium signaling controls a large variety of cell functions, including proliferation and apoptosis, and plays a major role in neoplastic transformation. Prostate cancer (PCa) is one of the most common malignancies in men. The transition to castration-resistant prostate cancer (CRPC), a lethal form that is still lacking an effective cure, could be influenced by fine tuning intracellular calcium ([Ca<sup>2+</sup>]<sub>i</sub>) homeostasis. This study investigates [Ca<sup>2+</sup>]<sub>i</sub> dynamics in metastatic PCa cell lines that mimic the progression of PCa to CRPC: (i) well differentiated LNCaP cells that require androgen for survival, and (ii) poorly differentiated, highly aggressive androgen-insensitive prostate cancer (AIPC) PC3 and DU145 cells. In AIPC cells, ATP induces a fast rise in [Ca<sup>2+</sup>]<sub>i</sub>, due to release from intracellular stores and sensitive to phospholipase C inhibitors, while LNCaP cells do not respond to ATP challenge. Moreover, AIPC cells showed a reduced capacity to store Ca<sup>2+</sup> in thapsigargin-sensitive stores and limited store-operated calcium entry, with respect to androgen-dependent LNCaP cells. Finally, green tea extract causes [Ca<sup>2+</sup>]<sub>i</sub> elevation and inhibits proliferation in PC3 and DU145 cells, but is ineffective in LNCaP cells. The consequences of these differences are discussed and interpreted in this study with reference to previously proposed models for Ca<sup>2+</sup> dependence of prostate carcinogenesis.</p>","PeriodicalId":38392,"journal":{"name":"Biomolecular Concepts","volume":" ","pages":"156-163"},"PeriodicalIF":0.0,"publicationDate":"2022-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40327339","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Calorimetry of extracellular vesicles fusion to single phospholipid membrane. 细胞外囊泡与单磷脂膜融合的量热法。
Biomolecular Concepts Pub Date : 2022-03-21 DOI: 10.1515/bmc-2022-0011
Miriam Grava, Sally Helmy, Mario Gimona, Pietro Parisse, Loredana Casalis, Paola Brocca, Valeria Rondelli
{"title":"Calorimetry of extracellular vesicles fusion to single phospholipid membrane.","authors":"Miriam Grava,&nbsp;Sally Helmy,&nbsp;Mario Gimona,&nbsp;Pietro Parisse,&nbsp;Loredana Casalis,&nbsp;Paola Brocca,&nbsp;Valeria Rondelli","doi":"10.1515/bmc-2022-0011","DOIUrl":"https://doi.org/10.1515/bmc-2022-0011","url":null,"abstract":"<p><p>Extracellular vesicles (EVs)-mediated communication relies not only on the delivery of complex molecular cargoes as lipids, proteins, genetic material, and metabolites to their target cells but also on the modification of the cell surface local properties induced by the eventual fusion of EVs' membranes with the cells' plasma membrane. Here we applied scanning calorimetry to study the phase transition of single phospholipid (DMPC) monolamellar vesicles, investigating the thermodynamical effects caused by the fusion of doping amounts of mesenchymal stem cells-derived EVs. Specifically, we studied EVs-induced consequences on the lipids distributed in the differently curved membrane leaflets, having different density and order. The effect of EV components was found to be not homogeneous in the two leaflets, the inner (more disordered one) being mainly affected. Fusion resulted in phospholipid membrane flattening associated with lipid ordering, while the transition cooperativity, linked to membrane domains' coexistence during the transition process, was decreased. Our results open new horizons for the investigation of the peculiar effects of EVs of different origins on target cell membrane properties and functionality.</p>","PeriodicalId":38392,"journal":{"name":"Biomolecular Concepts","volume":" ","pages":"148-155"},"PeriodicalIF":0.0,"publicationDate":"2022-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40308019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Diagnostic accuracy of genetic markers for identification of the Lr46/Yr29 "slow rusting" locus in wheat (Triticum aestivum L.). 小麦Lr46/Yr29“慢锈”位点遗传标记的诊断准确性
Biomolecular Concepts Pub Date : 2022-02-22 DOI: 10.1515/bmc-2022-0002
Roksana Bobrowska, Aleksandra Noweiska, Julia Spychała, Agnieszka Tomkowiak, Jerzy Nawracała, Michał T Kwiatek
{"title":"Diagnostic accuracy of genetic markers for identification of the <i>Lr46/Yr29</i> \"slow rusting\" locus in wheat (<i>Triticum aestivum</i> L.).","authors":"Roksana Bobrowska,&nbsp;Aleksandra Noweiska,&nbsp;Julia Spychała,&nbsp;Agnieszka Tomkowiak,&nbsp;Jerzy Nawracała,&nbsp;Michał T Kwiatek","doi":"10.1515/bmc-2022-0002","DOIUrl":"https://doi.org/10.1515/bmc-2022-0002","url":null,"abstract":"<p><p>Wheat leaf rust, caused by fungal pathogen <i>Puccinia triticina</i> Erikss, annually contributes to production losses as high as 40% in susceptible varieties and remains as one of the most damaging diseases of wheat worldwide. Currently, one of the major challenges of wheat geneticists and breeders is to accumulate major genes for durability of rust resistance called \"slow rusting\" genes using marker-assisted selection (MAS). Until now, eight genes (<i>Lr34/Yr18</i>, <i>Lr46/Yr29</i>, <i>Lr67/Yr46</i>, <i>Lr68</i>, <i>Lr74</i>, <i>Lr75</i>, <i>Lr77</i>, and <i>Lr78</i>) conferring resistance against multiple fungal pathogens have been identified in wheat gene pool and the molecular markers were developed for them. In MAS practice, it is a common problem that cultivars exhibiting desirable marker genotypes may not necessarily have the targeted genes or alleles and vice versa, which is known as \"false positives.\" The aim of this study was to compare the available four markers: <i>Xwmc44</i>, <i>Xgwm259</i>, <i>Xbarc80</i>, and <i>csLV46G22</i> markers (not published yet), for the identification of the <i>Lr46/Yr29</i> loci in 73 genotypes of wheat, which were reported as sources of various \"slow rusting\" genes, including 60 with confirmed <i>Lr46/Yr29</i> gene, reported in the literature. This research revealed that <i>csLV46G22</i> together with <i>Xwmc44</i> is most suitable for the identification of resistance allele of the <i>Lr46/Yr29</i> gene; however, there is a need to clone the <i>Lr46/Yr29</i> loci to identify and verify the allelic variation of the gene and the function.</p>","PeriodicalId":38392,"journal":{"name":"Biomolecular Concepts","volume":" ","pages":"1-9"},"PeriodicalIF":0.0,"publicationDate":"2022-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39960200","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信