{"title":"Estimation of minimum volume of bounding box for geometrical metrology","authors":"Petr Chelishchev, K. Sørby","doi":"10.1051/ijmqe/2020007","DOIUrl":"https://doi.org/10.1051/ijmqe/2020007","url":null,"abstract":"This paper presents algorithms for estimating the minimum volume bounding box based on a three-dimensional point set measured by a coordinate measuring machine. A new algorithm, which calculates the minimum volume with high accuracy and reduced number of computations, is developed. The algorithm is based on the convex hull operation and established theories about a minimum bounding box circumscribing a convex polyhedron. The new algorithm includes a pre-processing operation that removes convex polyhedron faces located near the edges of the measured object. As showed in the paper, the solution of the minimum bonding box is not based on faces located near the edges; therefore, we can save computation time by excluding them from the convex polyhedron data set. The algorithms have been demonstrated on physical objects measured by a coordinate measuring machine, and on theoretical 3D models. The results show that the algorithm can be used when high accuracy is required, for example in calibration of reference standards.","PeriodicalId":38371,"journal":{"name":"International Journal of Metrology and Quality Engineering","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"57885981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Integrated control performance of drive-by-wire independent drive electric vehicle","authors":"Lin Yu, Sun Yuan","doi":"10.1051/ijmqe/2019015","DOIUrl":"https://doi.org/10.1051/ijmqe/2019015","url":null,"abstract":"In order to improve the stability and safety of vehicles, it is necessary to control them. In this study, the integrated control method of drive-by-wire independent drive electric vehicle was studied. Firstly, the reference model of electric vehicle was established. Then, an integrated control method of acceleration slip regulation (ARS) and direct yaw moment control (DYC) was designed for controlling the nonlinearity of tyre, and the simulation experiment was carried out under the environment of MATLAB/SIMULINK. The results showed that the vehicle lost its stability when it was uncontrolled; under the control of a single DYC controller, r and β values got some control, but the vehicle stability was still low; under the integrated control of ARS+DYC, the vehicle stability was significantly improved; under the integrated control method, the overshoot, regulation time and steady-state error of the system were all small. Under the simulation of extreme conditions, the integrated control method also showed excellent performance, which suggested the method was reliable. The experimental results suggests the effectiveness of the integrated control method, which makes some contributions to the further research of the integrated control of electric vehicles.","PeriodicalId":38371,"journal":{"name":"International Journal of Metrology and Quality Engineering","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1051/ijmqe/2019015","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46676703","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pingli Wang, Guangli Wang, Yuping Gao, Hongbing Cai, Na Liu
{"title":"Comparison of VLBI and GNSS common view for time transfer","authors":"Pingli Wang, Guangli Wang, Yuping Gao, Hongbing Cai, Na Liu","doi":"10.1051/ijmqe/2019014","DOIUrl":"https://doi.org/10.1051/ijmqe/2019014","url":null,"abstract":"With the rapid development of optical clock, the stability and system uncertainty of optical clocks has reached a 1.0e–18 level. Optical clocks will likely constitute the next generation of time-frequency standards for redefining the SI second. Because time and frequency transfer services that rely on satellite systems are not always reliable and currently available technologies are insufficient for comparing the next generation of frequency standards, high-precision time and transfer techniques are strongly desired. Very Long Baseline Interferometry (VLBI) is one of the space geodetic techniques that measure the arrival time delays between multiple stations utilizing radio signals from distant celestial radio sources. Not only can VLBI obtain the angle position measurement of the radio source with sub-millisecond accuracy and the station coordinate measurement with millimeter accuracy, but also, it can provide high-precision information regarding inter-station atomic clock differences. Therefore, it is theoretically feasible to use the VLBI technology to do the remote time transfer. Because of this characteristic of VLBI technology, VLBI has significant application potential in the field of remote time transfer. To confirm the suitability of VLBI to time-frequency transfer for future practical applications, the results of VLBI and GPS common view time transfer were compared using a Kunming-Urumqi baseline. The performance characteristics of time transfer based on VLBI are then analyzed. Experimental results show that VLBI technology can accurately measure the variation of clock differences between stations as same as the GPS common view time comparison technology. It briefly describes the challenges of future VLBI technology for practical applications of time transfer.","PeriodicalId":38371,"journal":{"name":"International Journal of Metrology and Quality Engineering","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1051/ijmqe/2019014","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44416559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Long Li, Jianfeng Xiao, Wu Bin, Mengge Zhou, Q. Wang
{"title":"Online monitoring and diagnosis of high voltage circuit breaker faults: feature extraction analysis of vibration signals","authors":"Long Li, Jianfeng Xiao, Wu Bin, Mengge Zhou, Q. Wang","doi":"10.1051/ijmqe/2019012","DOIUrl":"https://doi.org/10.1051/ijmqe/2019012","url":null,"abstract":"The development of power grid system not only increases voltage and capacity, but also increases power risk. This paper briefly introduces the feature extraction method of the vibration signal of high voltage circuit breaker and support vector machine (SVM) algorithm and then analyzed the high voltage circuit breaker in three states: normal operation, fixed screw loosening and falling of opening spring, using the SVM based on the above feature extraction method. The results showed that the accuracy and precision rates of fault identification of circuit breaker were the highest by using the wavelet packet energy entropy extraction features, the false alarm rate was the lowest, and the detection time was the shortest.","PeriodicalId":38371,"journal":{"name":"International Journal of Metrology and Quality Engineering","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1051/ijmqe/2019012","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44012691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An investigation of copper chlorophyllin solution for low-cost optical devices calibration in chlorophyll measurement","authors":"B. Putra, R. Purwoko, I. Indarto, P. Soni","doi":"10.1051/ijmqe/2019009","DOIUrl":"https://doi.org/10.1051/ijmqe/2019009","url":null,"abstract":"Chlorophylls and turbidity are related parameters deemed important in predicting water quality, especially in the freshwater fisheries sector. In other hand, chlorophyll contents in vegetation are often used as a measure for estimating plant health. To ensure the chlorophyll content, appropriate analysis techniques are needed, which include, yet not limited to, dimethylsulfoxide (DMSO), acetone extraction analysis, and measuring turbidity using expensive equipment. Measurements using these methods are still not reliable, especially for smallholders. In addition, calibration of a digital camera for these purposes requires several efforts of preparing a series of chemical analyses and the qualities of newly developed cameras have increased. Thus, calibration needs to be taken into account for improving the accuracy in estimating chlorophyll contents. This study posits fundamental findings germane to the potential use of chlorophyllin for calibrating the optimal instrument, like consumer-grade cameras. Sodium copper chlorophyllin is commonly used as food additive and ingredients, and medical treatments. However, we can gain another benefit of chlorophyllin, particularly for developing low-cost optical instruments for estimating chlorophyll content through hydro-color-based with promising accuracy.","PeriodicalId":38371,"journal":{"name":"International Journal of Metrology and Quality Engineering","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1051/ijmqe/2019009","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49210233","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Motion planning optimization of trajectory path of space manipulators","authors":"D. Qiao","doi":"10.1051/ijmqe/2019011","DOIUrl":"https://doi.org/10.1051/ijmqe/2019011","url":null,"abstract":"With the development of the aerospace industry, the work carried out inside and outside the weightless space station is becoming more and more complicated. In order to ensure the safety of astronauts, space manipulators are used for operation, but it will disturb the space station that is a base during work. In order to solve the above problems, in this paper, the planning method of the motion trajectory of manipulators, the motion model of manipulators and the particle swarm optimization (PSO) algorithm used for optimizing the trajectory are briefly introduced, the multi-population co-evolution method is used to improve the PSO algorithm, and the above two algorithms are used to optimize the motion trajectory of the floating pedestal space manipulator with three free degrees of rotation in the same plane by the matrix laboratory (MATLAB) software. It is compared with genetic algorithm. The results show that the improved PSO algorithm can converge to a better global optimal fitness with fewer iterations compared with the traditional PSO algorithm and genetic algorithm. The obtained motion trajectory optimized by the improved PSO algorithm has less disturbances to the pedestal posture, and less time is required to achieve the target motion; moreover the changes of mechanical arm joint are more stable during the motion.","PeriodicalId":38371,"journal":{"name":"International Journal of Metrology and Quality Engineering","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1051/ijmqe/2019011","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46026271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Signal processing algorithm of ship navigation radar based on azimuth distance monitoring","authors":"Yuxin Qin, Yu Chen","doi":"10.1051/ijmqe/2019010","DOIUrl":"https://doi.org/10.1051/ijmqe/2019010","url":null,"abstract":"The effect of ship navigation radar signal processing has a great impact on the overall performance of the radar system. In this paper, the signal processing algorithm is studied. Firstly, the principle of radar azimuth and distance monitoring is introduced, then the pulse accumulation algorithm and median filtering algorithm are analyzed, and finally a sea clutter suppression algorithm based on sensitivity time control (STC) and a rain and snow clutter suppression algorithm based on constant false alarm rate are designed to improve the target monitoring performance of radar. In the test of the algorithm, the radar signal processing algorithm designed in this study has good precision as monitoring error of the target's azimuth and distance is controlled within 1%; and it also has a better suppression effect of sea clutter and rain and snow clutter, which can suppress the clutter well, improve the target clarity, and ensure the safe navigation of the ship. The experiment proves the effectiveness of the proposed algorithm and provides some theoretical basis for the better processing of radar signals, which is beneficial to improve the environment perception ability of ships in harsh environments and promote the further development of the navigation industry.","PeriodicalId":38371,"journal":{"name":"International Journal of Metrology and Quality Engineering","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1051/ijmqe/2019010","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46875600","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Pyrolytic carbon: applications of its diamagnetism in metrology","authors":"P. Pinot, Z. Silvestri","doi":"10.1051/IJMQE/2019008","DOIUrl":"https://doi.org/10.1051/IJMQE/2019008","url":null,"abstract":"This paper presents some current or potential applications in metrology based on the diamagnetism of pyrolytic carbon (PyC). The magnetic repulsion force acting between a piece of PyC subjected to a magnetic flux can be used as magnetic spring either to control the position of the sensitive sensor element or to detect changes of a physical quantity to be measured. The first part of this paper provides examples briefly described of devices based on the diamagnetism of PyC for measuring mechanical quantities. There are two main configurations for magnetic levitation: one, used for measuring acceleration or inclination for instance, is based on the levitation of a PyC tile above a magnet or set of magnets; In the other, used to measure forces caused for example by contact or buoyancy, it is the permanent magnet that is levitated at a stable height above a fixed PyC tile. The second part describes current work at the Laboratoire Commun de Métrologie (LCM-LNE/CNAM) on the development of new laser power sensors using either diamagnetic force changes by photothermal excitation of electrons or diamagnetic torsion spring.","PeriodicalId":38371,"journal":{"name":"International Journal of Metrology and Quality Engineering","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1051/IJMQE/2019008","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49202861","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Characterization of high-precision resistive voltage divider and buffer amplifier for ac voltage metrology","authors":"B. Karlsen, K. Lind, H. Malmbekk, P. Ohlckers","doi":"10.1051/IJMQE/2019006","DOIUrl":"https://doi.org/10.1051/IJMQE/2019006","url":null,"abstract":"A high-precision voltage buffer and a 10:1 resistive voltage divider have been constructed for use in ac voltage and electrical power metrology. Long-term stability of the buffer's dc response has been demonstrated by two dc sweeps performed 20 days apart, with best-fit linearized gain varying less than 1 μV/V. The absolute ac gain has been measured using a high-precision digital multimeter for 10 Hz and 1 kHz with results consistent with dc within 5 μV/V. This value agrees with the characterization of ac–dc difference using thermal converters from different producers with a variety of resistance for various voltages from 1 V to 5 V. The ac–dc difference was further characterized better than 40 μV/V for the same voltages up to 100 kHz and better than 100 μV/V for 3 V at 1 MHz. Absolute ac gain and ac–dc difference has also been measured for the voltage divider and buffer combination from 10 V to 50 V, with similar agreement up to 1 kHz. The ac–dc difference from 10 Hz to 100 kHz of this combination shows an agreement well within 30 μV/V in this entire voltage span with a total response not exceeding 125 μV/V. This make the voltage divider and buffer combination suitable for sampling electrical powers for a wide range of voltages.","PeriodicalId":38371,"journal":{"name":"International Journal of Metrology and Quality Engineering","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1051/IJMQE/2019006","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42471310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aline Demarch, Elcio Angioletto, A. W. Vieira, Andreza Dal Molin, O. Montedo, E. Angioletto
{"title":"Coefficients of static and dynamic friction of ceramic floor tiles: proposal of new method of surface roughness determination","authors":"Aline Demarch, Elcio Angioletto, A. W. Vieira, Andreza Dal Molin, O. Montedo, E. Angioletto","doi":"10.1051/IJMQE/2019002","DOIUrl":"https://doi.org/10.1051/IJMQE/2019002","url":null,"abstract":"Among the most important properties of ceramic floor tiles, the static and dynamic coefficients of friction assume an important role. The literature and current standards regarding ceramic floor tiles suggest different methods for determining the values of the coefficients of static and dynamic friction; however, all methods present limitations of implementation, and it is common for them to produce different values and hence specifications for different applications. In the present study, tests were conducted on the products with different topcoats and roughness to determine the coefficient of friction using the standards NBR 13818, ANSI A137.1, DIN 51130, and UNE-ENV 12633 and our proposed methodology. These values were compared with the roughness measurements obtained by mechanical contact profilometry. Additionally, empirical human evaluation of the roughness was performed. The trials indicated very different results on different experimental equipment for the same type of surface. The roughness test yielded parameters that correlate well with the empirical evaluation. The study shows the need for searching the uniformity of standards because each methodology produces different (even uncorrelated) results.","PeriodicalId":38371,"journal":{"name":"International Journal of Metrology and Quality Engineering","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1051/IJMQE/2019002","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47138530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}