高压断路器故障的在线监测与诊断:振动信号的特征提取分析

Q3 Engineering
Long Li, Jianfeng Xiao, Wu Bin, Mengge Zhou, Q. Wang
{"title":"高压断路器故障的在线监测与诊断:振动信号的特征提取分析","authors":"Long Li, Jianfeng Xiao, Wu Bin, Mengge Zhou, Q. Wang","doi":"10.1051/ijmqe/2019012","DOIUrl":null,"url":null,"abstract":"The development of power grid system not only increases voltage and capacity, but also increases power risk. This paper briefly introduces the feature extraction method of the vibration signal of high voltage circuit breaker and support vector machine (SVM) algorithm and then analyzed the high voltage circuit breaker in three states: normal operation, fixed screw loosening and falling of opening spring, using the SVM based on the above feature extraction method. The results showed that the accuracy and precision rates of fault identification of circuit breaker were the highest by using the wavelet packet energy entropy extraction features, the false alarm rate was the lowest, and the detection time was the shortest.","PeriodicalId":38371,"journal":{"name":"International Journal of Metrology and Quality Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1051/ijmqe/2019012","citationCount":"3","resultStr":"{\"title\":\"Online monitoring and diagnosis of high voltage circuit breaker faults: feature extraction analysis of vibration signals\",\"authors\":\"Long Li, Jianfeng Xiao, Wu Bin, Mengge Zhou, Q. Wang\",\"doi\":\"10.1051/ijmqe/2019012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The development of power grid system not only increases voltage and capacity, but also increases power risk. This paper briefly introduces the feature extraction method of the vibration signal of high voltage circuit breaker and support vector machine (SVM) algorithm and then analyzed the high voltage circuit breaker in three states: normal operation, fixed screw loosening and falling of opening spring, using the SVM based on the above feature extraction method. The results showed that the accuracy and precision rates of fault identification of circuit breaker were the highest by using the wavelet packet energy entropy extraction features, the false alarm rate was the lowest, and the detection time was the shortest.\",\"PeriodicalId\":38371,\"journal\":{\"name\":\"International Journal of Metrology and Quality Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1051/ijmqe/2019012\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Metrology and Quality Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/ijmqe/2019012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Metrology and Quality Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/ijmqe/2019012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 3

摘要

电网系统的发展不仅增加了电压和容量,而且增加了电力风险。本文简要介绍了高压断路器振动信号的特征提取方法和支持向量机(SVM)算法,并在上述特征提取方法的基础上,对高压断路器在正常运行、固定螺丝松动和分闸弹簧下落三种状态下进行了分析。结果表明,利用小波包能量熵提取特征进行断路器故障识别的准确率和准确率最高,误报率最低,检测时间最短。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Online monitoring and diagnosis of high voltage circuit breaker faults: feature extraction analysis of vibration signals
The development of power grid system not only increases voltage and capacity, but also increases power risk. This paper briefly introduces the feature extraction method of the vibration signal of high voltage circuit breaker and support vector machine (SVM) algorithm and then analyzed the high voltage circuit breaker in three states: normal operation, fixed screw loosening and falling of opening spring, using the SVM based on the above feature extraction method. The results showed that the accuracy and precision rates of fault identification of circuit breaker were the highest by using the wavelet packet energy entropy extraction features, the false alarm rate was the lowest, and the detection time was the shortest.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Metrology and Quality Engineering
International Journal of Metrology and Quality Engineering Engineering-Safety, Risk, Reliability and Quality
CiteScore
1.70
自引率
0.00%
发文量
8
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信