{"title":"SPECTRAL DYNAMIC STIFFNESS METHOD FOR THE FLUTTER PROBLEM OF COMBINED PLATES","authors":"S. Papkov, Yu. I. Papkova, V. Pasechnik","doi":"10.15593/perm.mech/2023.1.09","DOIUrl":"https://doi.org/10.15593/perm.mech/2023.1.09","url":null,"abstract":"At present time, the spectral dynamic stiffness method is being actively developed as an alternative to the finite element method for vibration and stability problems of composite structures from beams, rods, plates and shells. This approach, based on exact solutions of governing differential equations, makes it possible to more effectively study the problem in the medium and high frequency ranges, and gives analytical expressions for natural modes. It is proposed to use the advantages of this method to study the problems of dynamic stability and flutter of an orthotropic composite plate in a supersonic gas flow. Using the linear approximation of piston theory, solution of the problem is investigated according to the Galerkin method on the basis of the eigenforms of a composite plate in vacuum. According to this approach the boundary value problem is reduced to a homogeneous infinite linear algebraic system of equations with coefficients are depending from physical-mechanical and geometrical parameters of the problem. The frequency parameter is included in the system linearly, that allows us to reduce eigenproblem for infinite system to the problem of determining the eigenvalues and vectors of a matrix. The convergence of the Galerkin method depending on the number of basis functions is studied numerically. It is shown that the first 16 eigenforms provide the good convergence of the method. Examples of numerical implementation are given, obtained solution allow us to study the dependence of the critical velocity from the properties of the material and geometry of the combined plate.","PeriodicalId":38176,"journal":{"name":"PNRPU Mechanics Bulletin","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42642029","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"ON THE RECONSTRUCTION OF PRESTRESS FIELDS IN A HOLLOW CYLINDER","authors":"R. Nedin, V. Yurov","doi":"10.15593/perm.mech/2023.1.08","DOIUrl":"https://doi.org/10.15593/perm.mech/2023.1.08","url":null,"abstract":"The present research is devoted to the development of the theoretical foundations of nondestructive acoustic method for identifying inhomogeneous prestress fields in a hollow cylinder, depending on the probing loading type. A linearized model of steady oscillations of an elastic body in the presence of an inhomogeneous prestress field of arbitrary nature is considered in the standard and weak formulations. On the basis of this model, we formulate a problem for a cantilever-clamped prestressed hollow cylinder that performs steady axisymmetric vibrations under three types of probing loading. A corresponding weak formulation of the problem in the cylindrical coordinate system is presented, in which six independent components of the prestress tensor are taken into account. At that, a case of prestress fields obtained by applying some initial mechanical external static load is considered. In the presence and absence of prestresses of various types, amplitude-frequency dependences are analyzed, and resonant and natural frequencies are found in a wide frequency range. Numerical calculations were carried out using the FEM on a non-uniform grid; mesh refinement is carried out in the vicinity of the boundary points, where the type of boundary conditions changes. Based on the numerical solution of an auxiliary set of direct problems, seven types of prestress fields are constructed, differing in the types of initial loading, most often encountered in practice. To assess the possibility of implementing the procedure for reconstructing prestresses of each of the considered types, a sensitivity analysis was additionally performed, which showed that for some prestress types there are frequencies and types of probing loading for which the presence of prestress is practically not manifested. The sensitivity analysis performed made it possible to implement the optimal method of probing loading when solving the inverse coefficient problem. The statement of the new inverse problem on the restoration of arbitrary inhomogeneous prestress fields in the considered finite hollow cylinder is formulated. When restoring the prestress of a given structure, the inverse problem is reduced to finding a set of parameters from an ill-conditioned algebraic system, which was studied with the help of the A.N. Tikhonov regularization method. Additional data for solving the inverse problem was obtained on the basis of probing both via a single load and via combined probing modes. It has been found that it is most effective to use a combined loading mode and use a sufficiently wide frequency range when selecting sounding frequencies. The results of computational experiments on the reconstruction of six components of the prestress tensor are presented and analyzed, and recommendations are proposed for choosing the optimal modes of acoustic sounding.","PeriodicalId":38176,"journal":{"name":"PNRPU Mechanics Bulletin","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67222191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Soloviev, B. Sobol, P. Vasiliev, A. V. Senichev, A. Novikova
{"title":"IDENTIFICATION OF DEFECTS IN A COATING WEDGE BASED ON ULTRASONIC NON-DESTRUCTIVE TESTING METHODS AND CONVOLUTIONAL NEURAL NETWORKS","authors":"A. Soloviev, B. Sobol, P. Vasiliev, A. V. Senichev, A. Novikova","doi":"10.15593/perm.mech/2023.1.11","DOIUrl":"https://doi.org/10.15593/perm.mech/2023.1.11","url":null,"abstract":"The paper deals with the identification of a crack-like defect in a coated wedge based on ultrasonic nondestructive testing. The authors propose an approach of defect identification followed by determination of its geometrical parameters. The approach is based on a shadowed ultrasonic nondestructive testing method combined with deep machine learning technologies. A wedge-shaped area is inspected for the presence of an internal defect. On one edge of the wedge there is a source of ultrasonic vibrations, on the opposite edge there is a receiver. Passing through the coating and body of the wedge, part of the signal is reflected from inhomogeneities and defects that may be present in it. The signal reaching the opposite edge of the wedge is read by the receiver. The received data is processed by a neural network model, which predicts the presence or absence of an internal defect and, if present, determines geometric parameters such as size and position. A finite element model of ultrasonic wave propagation inside the wedge is constructed. Special damping layers are used, due to which the influence of parasitic signal reflections and its further propagation into the wedge body is significantly reduced. Based on the built model, the shadow method of ultrasonic scanning is implemented. This method implies that on one side of the wedge are installed excitation devices, and on the opposite side – receiving devices. Several numerical experiments for various combinations of geometric parameters of the wedge and the defect have been performed using a distributed computing system. Based on the obtained data, a neural network model was built and trained, capable of identifying the defect and determining its characteristics. The input of the model is spectrograms of the readout signal, and the output is values characterizing the defect.","PeriodicalId":38176,"journal":{"name":"PNRPU Mechanics Bulletin","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41631363","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Kalyulin, N. A. Kalyulin, V. Modorskii, N. V. Vladimirov
{"title":"NUMERICAL SIMULATION OF GAS-DYNAMIC AND STRENGTH CHARACTERISTICS OF A FAN FOR THE EXPERIMENTAL TEST RIG FOR INVESTIGATION OF ICE BREAKDOWN ON ROTATING WORKING BLADES","authors":"S. Kalyulin, N. A. Kalyulin, V. Modorskii, N. V. Vladimirov","doi":"10.15593/perm.mech/2023.1.13","DOIUrl":"https://doi.org/10.15593/perm.mech/2023.1.13","url":null,"abstract":"The paper is devoted to modern experimental and computational studies analysis on the point of asymmetric destruction of ice on the surfaces of the working blades of gas-turbine engine blades. A schematic diagram of an experimental setup has been developed, which consists of the following main elements: a wind tunnel, a cold chamber, a model fan, an electric motor, and a high-speed video camera. The experimental setup makes it possible to carry out laboratory studies of the ice formation and destruction processes. The choice of the experimental test rig parameters was made to allow assessing the icing of the blades of a rotating fan, which reproduces the processes occurring on gas turbine engines. Based on the results of three-dimensional gas-dynamic and strength calculations, the design and basic geometrical parameters of the flow path and the dummy fan were determined. The dependences of compression ratio Pk and the power consumption of a model fan Wcons on the value of the mass air flow Gair for a different number of rotor blades are presented. The choice of materials for the disk hub and blades of a dummy fan which experience tensile and bending loads at high rotation speeds up to 12.000 rpm was made, that satisfies the conditions of static and dynamic strength, also the allowable safety factors were evaluated, and pressure characteristics were obtained.","PeriodicalId":38176,"journal":{"name":"PNRPU Mechanics Bulletin","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67222232","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"APPLICABILITY INDICATORS FOR THE NONLINEAR MAXWELL-TYPE ELASTO-VISCOPLASTIC MODEL WITH POWER MATERIAL FUNCTIONS AND TECHNIQUES TO CALIBRATE THEM","authors":"А. Khokhlov","doi":"10.15593/perm.mech/2023.1.14","DOIUrl":"https://doi.org/10.15593/perm.mech/2023.1.14","url":null,"abstract":"A physically non-linear Maxwell-type constitutive relation with two material functions for nonaging elasto-viscoplastic materials is studied analytically in order to examine the set of basic rheological phenomena that it simulates, to enclose its application field, to obtain necessary phenomenological restrictions which should be imposed on its material functions and to develop identification and validation techniques. Characteristic features of loading-unloading-recovery curves family produced by the model with two power material functions (with four parameters) under loading and unloading at constant stress rates and subsequent rest are analyzed in uni-axial case and compared to general properties of stress-strain-recovery curves produced by the constitutive relation with two arbitrary (increasing) material functions (theorems 1 and 2). Their dependences on loading rate, maximal stress and material functions exponents are examined. Power functions are the most popular in creep models, elastoviscoplasticity, polymer rheology, hydrodinamics of non-newtonian fluids and simulation of superplastic flow. The analysis reveals several specific properties of theoretic loading-unloading-recovery curves produced by power model with four parameters that can be employed as the model applicability indicators which are convenient for check using test data of a material. They should be checked in addition to general applicability indicators for the Maxwell-type constitutive relation with two arbitrary material functions. A number of effective calibration procedures for the model in the class of power material functions are developed. They are more rapid and effective than general identification techniques for two arbitrary material functions developed previously. The first procedure employs a pair of stress-strain curves at different stress rates, the second one is based on a pair of loadingunloading- recovery curves with various maximal stress values and loading rates and the third one needs only one loading-unloading-recovery curve. The explicit expressions are derived for four material parameters via test data. They enable separate and direct evaluation of the material parameters without error accumulation. Identification techniques versions are considered and their advantages and shortcomings are discussed. The ways to minimize the error using additional tests are proposed.","PeriodicalId":38176,"journal":{"name":"PNRPU Mechanics Bulletin","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67222244","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}