组合板颤振问题的谱动刚度法

Q3 Materials Science
S. Papkov, Yu. I. Papkova, V. Pasechnik
{"title":"组合板颤振问题的谱动刚度法","authors":"S. Papkov, Yu. I. Papkova, V. Pasechnik","doi":"10.15593/perm.mech/2023.1.09","DOIUrl":null,"url":null,"abstract":"At present time, the spectral dynamic stiffness method is being actively developed as an alternative to the finite element method for vibration and stability problems of composite structures from beams, rods, plates and shells. This approach, based on exact solutions of governing differential equations, makes it possible to more effectively study the problem in the medium and high frequency ranges, and gives analytical expressions for natural modes. It is proposed to use the advantages of this method to study the problems of dynamic stability and flutter of an orthotropic composite plate in a supersonic gas flow. Using the linear approximation of piston theory, solution of the problem is investigated according to the Galerkin method on the basis of the eigenforms of a composite plate in vacuum. According to this approach the boundary value problem is reduced to a homogeneous infinite linear algebraic system of equations with coefficients are depending from physical-mechanical and geometrical parameters of the problem. The frequency parameter is included in the system linearly, that allows us to reduce eigenproblem for infinite system to the problem of determining the eigenvalues and vectors of a matrix. The convergence of the Galerkin method depending on the number of basis functions is studied numerically. It is shown that the first 16 eigenforms provide the good convergence of the method. Examples of numerical implementation are given, obtained solution allow us to study the dependence of the critical velocity from the properties of the material and geometry of the combined plate.","PeriodicalId":38176,"journal":{"name":"PNRPU Mechanics Bulletin","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SPECTRAL DYNAMIC STIFFNESS METHOD FOR THE FLUTTER PROBLEM OF COMBINED PLATES\",\"authors\":\"S. Papkov, Yu. I. Papkova, V. Pasechnik\",\"doi\":\"10.15593/perm.mech/2023.1.09\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"At present time, the spectral dynamic stiffness method is being actively developed as an alternative to the finite element method for vibration and stability problems of composite structures from beams, rods, plates and shells. This approach, based on exact solutions of governing differential equations, makes it possible to more effectively study the problem in the medium and high frequency ranges, and gives analytical expressions for natural modes. It is proposed to use the advantages of this method to study the problems of dynamic stability and flutter of an orthotropic composite plate in a supersonic gas flow. Using the linear approximation of piston theory, solution of the problem is investigated according to the Galerkin method on the basis of the eigenforms of a composite plate in vacuum. According to this approach the boundary value problem is reduced to a homogeneous infinite linear algebraic system of equations with coefficients are depending from physical-mechanical and geometrical parameters of the problem. The frequency parameter is included in the system linearly, that allows us to reduce eigenproblem for infinite system to the problem of determining the eigenvalues and vectors of a matrix. The convergence of the Galerkin method depending on the number of basis functions is studied numerically. It is shown that the first 16 eigenforms provide the good convergence of the method. Examples of numerical implementation are given, obtained solution allow us to study the dependence of the critical velocity from the properties of the material and geometry of the combined plate.\",\"PeriodicalId\":38176,\"journal\":{\"name\":\"PNRPU Mechanics Bulletin\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PNRPU Mechanics Bulletin\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15593/perm.mech/2023.1.09\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PNRPU Mechanics Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15593/perm.mech/2023.1.09","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

摘要

目前,谱动刚度法正在积极发展,作为梁、杆、板和壳组合结构振动和稳定性问题的有限元法的替代方法。这种方法基于控制微分方程的精确解,可以更有效地研究中高频范围内的问题,并给出自然模态的解析表达式。利用该方法的优点,研究了正交各向异性复合材料板在超声速气流中的动力稳定性和颤振问题。利用活塞理论的线性近似,基于复合材料板在真空中的本征形式,用伽辽金方法研究了该问题的解。根据这种方法,边值问题被简化为齐次无限线性代数方程组,其系数取决于问题的物理力学和几何参数。频率参数线性地包含在系统中,这使得我们可以将无限系统的本征问题简化为确定矩阵的本征值和向量的问题。对Galerkin方法的收敛性进行了数值研究。结果表明,前16个本征形式提供了该方法的良好收敛性。给出了数值实现的例子,获得的解使我们能够从组合板的材料和几何形状的性质来研究临界速度的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SPECTRAL DYNAMIC STIFFNESS METHOD FOR THE FLUTTER PROBLEM OF COMBINED PLATES
At present time, the spectral dynamic stiffness method is being actively developed as an alternative to the finite element method for vibration and stability problems of composite structures from beams, rods, plates and shells. This approach, based on exact solutions of governing differential equations, makes it possible to more effectively study the problem in the medium and high frequency ranges, and gives analytical expressions for natural modes. It is proposed to use the advantages of this method to study the problems of dynamic stability and flutter of an orthotropic composite plate in a supersonic gas flow. Using the linear approximation of piston theory, solution of the problem is investigated according to the Galerkin method on the basis of the eigenforms of a composite plate in vacuum. According to this approach the boundary value problem is reduced to a homogeneous infinite linear algebraic system of equations with coefficients are depending from physical-mechanical and geometrical parameters of the problem. The frequency parameter is included in the system linearly, that allows us to reduce eigenproblem for infinite system to the problem of determining the eigenvalues and vectors of a matrix. The convergence of the Galerkin method depending on the number of basis functions is studied numerically. It is shown that the first 16 eigenforms provide the good convergence of the method. Examples of numerical implementation are given, obtained solution allow us to study the dependence of the critical velocity from the properties of the material and geometry of the combined plate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
PNRPU Mechanics Bulletin
PNRPU Mechanics Bulletin Materials Science-Materials Science (miscellaneous)
CiteScore
1.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信