International Journal of Electrical and Computer Engineering最新文献

筛选
英文 中文
Software defined fog platform 软件定义的雾平台
International Journal of Electrical and Computer Engineering Pub Date : 2023-10-01 DOI: 10.11591/ijece.v13i5.pp5454-5461
Sepideh Sheikhi Nejad, Ahmad Khademzadeh, A. Rahmani, A. Broumandnia
{"title":"Software defined fog platform","authors":"Sepideh Sheikhi Nejad, Ahmad Khademzadeh, A. Rahmani, A. Broumandnia","doi":"10.11591/ijece.v13i5.pp5454-5461","DOIUrl":"https://doi.org/10.11591/ijece.v13i5.pp5454-5461","url":null,"abstract":"In recent years, the number of end users connected to the internet of things (IoT) has increased, and we have witnessed the emergence of the cloud computing paradigm. These users utilize network resources to meet their quality of service (QoS) requirements, but traditional networks are not configured to backing maximum of scalability, real-time data transfer, and dynamism, resulting in numerous challenges. This research presents a new platform of IoT architecture that adds the benefits of two new technologies: software-defined networking and fog paradigm. Software-defined networking (SDN) refers to a centralized control layer of the network that enables sophisticated methods for traffic control and resource allocation. So, fog paradigm allows for data to be analyzed and managed at the edge of the network, making it suitable for tasks that require low and predictable delay. Thus, this research provides an in-depth view of the platform organize and performance of its base ingredients, as well as the potential uses of the suggested platform in various applications.","PeriodicalId":38060,"journal":{"name":"International Journal of Electrical and Computer Engineering","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46386766","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Channel and spatial attention mechanism for fashion image captioning 时尚图片字幕的通道和空间注意机制
International Journal of Electrical and Computer Engineering Pub Date : 2023-10-01 DOI: 10.11591/ijece.v13i5.pp5833-5842
Bao T. Nguyen, S. T. Nguyen, Anh H. Vo
{"title":"Channel and spatial attention mechanism for fashion image captioning","authors":"Bao T. Nguyen, S. T. Nguyen, Anh H. Vo","doi":"10.11591/ijece.v13i5.pp5833-5842","DOIUrl":"https://doi.org/10.11591/ijece.v13i5.pp5833-5842","url":null,"abstract":"Image captioning aims to automatically generate one or more description sentences for a given input image. Most of the existing captioning methods use encoder-decoder model which mainly focus on recognizing and capturing the relationship between objects appearing in the input image. However, when generating captions for fashion images, it is important to not only describe the items and their relationships, but also mention attribute features of clothes (shape, texture, style, fabric, and more). In this study, one novel model is proposed for fashion image captioning task which can capture not only the items and their relationship, but also their attribute features. Two different attention mechanisms (spatial-attention and channel-wise attention) is incorporated to the traditional encoder-decoder model, which dynamically interprets the caption sentence in multi-layer feature map in addition to the depth dimension of the feature map. We evaluate our proposed architecture on Fashion-Gen using three different metrics (CIDEr, ROUGE-L, and BLEU-1), and achieve the scores of 89.7, 50.6 and 45.6, respectively. Based on experiments, our proposed method shows significant performance improvement for the task of fashion-image captioning, and outperforms other state-of-the-art image captioning methods.","PeriodicalId":38060,"journal":{"name":"International Journal of Electrical and Computer Engineering","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46325567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Predicting active compounds for lung cancer based on quantitative structure-activity relationships 基于定量构效关系预测癌症活性化合物
International Journal of Electrical and Computer Engineering Pub Date : 2023-10-01 DOI: 10.11591/ijece.v13i5.pp5755-5763
H. Hanafi, B. D. Rossi Hassani, M’hamed Aït Kbir
{"title":"Predicting active compounds for lung cancer based on quantitative structure-activity relationships","authors":"H. Hanafi, B. D. Rossi Hassani, M’hamed Aït Kbir","doi":"10.11591/ijece.v13i5.pp5755-5763","DOIUrl":"https://doi.org/10.11591/ijece.v13i5.pp5755-5763","url":null,"abstract":"Recently, advancements in computational and artificial intelligence (AI) methods have contributed in improving research results in the field of drug discovery. In fact, machine learning techniques have proven to be especially effective in this regard, aiding in the development of new drug variants and enabling more precise targeting of specific disease mechanisms. In this paper, we propose to use a quantitative structure-activity relationship-based approach for predicting active compounds related to non-small cell lung cancer. Our approach uses a neural network classifier that learns from sequential structures and chemical properties of molecules, as well as a gradient boosting tree classifier to conduct comparative analysis. To evaluate the contribution of each feature, we employ Shapley additive explanations (SHAP) summary plots to perform features selection. Our approach involves a dataset of active and non-active molecules collected from ChEMBL database. Our results show the effectiveness of the proposed approach when it comes to predicting accurately active compounds for lung cancer. Furthermore, our comparative analysis reveals important chemical structures that contribute to the effectiveness of the compounds. Thus, the proposed approach can greatly enhance the drug discovery pipeline and may lead to the development of new and effective treatments for lung cancer.","PeriodicalId":38060,"journal":{"name":"International Journal of Electrical and Computer Engineering","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48101967","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Regional feature learning using attribute structural analysis in bipartite attention framework for vehicle re-identification 基于二元注意框架属性结构分析的区域特征学习用于车辆再识别
International Journal of Electrical and Computer Engineering Pub Date : 2023-10-01 DOI: 10.11591/ijece.v13i5.pp5824-5832
Cynthia Sherin, Kayalvizhi Jayavel
{"title":"Regional feature learning using attribute structural analysis in bipartite attention framework for vehicle re-identification","authors":"Cynthia Sherin, Kayalvizhi Jayavel","doi":"10.11591/ijece.v13i5.pp5824-5832","DOIUrl":"https://doi.org/10.11591/ijece.v13i5.pp5824-5832","url":null,"abstract":"Vehicle re-identification identifies target vehicles using images obtained by numerous non-overlapping real-time surveillance cameras. The effectiveness of re-identification is further challenging because of illumination changes, pose differences of captured images, and resolution. Fine-grained appearance changes in vehicles are recognized in addition to the coarse-grained characteristics like color of the vehicle along with model, and other custom features like logo stickers, annual service signs, and hangings to overcome these challenges. To prove the efficiency of our proposed bipartite attention framework, a novel dataset called Attributes27 which has 27 labelled attributes for each class are created. Our framework contains three major sections: The first section where the overall and semantic characteristics of every individual vehicle image are extracted by a double branch convolutional neural network (CNN) layer. Secondly, to identify the region of interests (ROIs) each branch has a self-attention block linked to it. Lastly to extract the regional features from the obtained ROIs, a partition-alignment block is deployed. The results of our proposed system’s evaluation on the Attributes27 and VeRi-776 datasets has highlighted significant regional attributes of each vehicle and improved the accuracy. Attributes27 and VeRi-776 datasets exhibits 98.5% and 84.3% accuracy respectively which are comparatively higher than the existing methods with 78.6% accuracy.","PeriodicalId":38060,"journal":{"name":"International Journal of Electrical and Computer Engineering","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44011080","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Explainable extreme boosting model for breast cancer diagnosis 可解释的乳腺癌诊断极端增强模型
International Journal of Electrical and Computer Engineering Pub Date : 2023-10-01 DOI: 10.11591/ijece.v13i5.pp5764-5769
Tamilarasi Suresh, Tsehay Admassu Assegie, S. Ganesan, R. Tulasi, Radha Mothukuri, Ayodeji Olalekan Salau
{"title":"Explainable extreme boosting model for breast cancer diagnosis","authors":"Tamilarasi Suresh, Tsehay Admassu Assegie, S. Ganesan, R. Tulasi, Radha Mothukuri, Ayodeji Olalekan Salau","doi":"10.11591/ijece.v13i5.pp5764-5769","DOIUrl":"https://doi.org/10.11591/ijece.v13i5.pp5764-5769","url":null,"abstract":"This study investigates the Shapley additive explanation (SHAP) of the extreme boosting (XGBoost) model for breast cancer diagnosis. The study employed Wisconsin’s breast cancer dataset, characterized by 30 features extracted from an image of a breast cell. SHAP module generated different explainer values representing the impact of a breast cancer feature on breast cancer diagnosis. The experiment computed SHAP values of 569 samples of the breast cancer dataset. The SHAP explanation indicates perimeter and concave points have the highest impact on breast cancer diagnosis. SHAP explains the XGB model diagnosis outcome showing the features affecting the XGBoost model. The developed XGB model achieves an accuracy of 98.42%.","PeriodicalId":38060,"journal":{"name":"International Journal of Electrical and Computer Engineering","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41383108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Shannon entropy on near-infrared spectroscopy for nondestructively determining water content in oil palm 近红外光谱法无损测定油棕含水量的香农熵
International Journal of Electrical and Computer Engineering Pub Date : 2023-10-01 DOI: 10.11591/ijece.v13i5.pp5397-5405
I. Novianty, W. Sholihah, G. P. Mindara, Muhammad Iqbal Nurulhaq, Anifatul Faricha, R. Sinambela, P. B. Purwandoko, M. A. Nanda
{"title":"Shannon entropy on near-infrared spectroscopy for nondestructively determining water content in oil palm","authors":"I. Novianty, W. Sholihah, G. P. Mindara, Muhammad Iqbal Nurulhaq, Anifatul Faricha, R. Sinambela, P. B. Purwandoko, M. A. Nanda","doi":"10.11591/ijece.v13i5.pp5397-5405","DOIUrl":"https://doi.org/10.11591/ijece.v13i5.pp5397-5405","url":null,"abstract":"Indonesia is the world’s largest producer of palm oil. To preserve its competitive advantages, the Indonesian oil palm sector must expand high-quality palm oil output. In oil palm quality control, the water content is a crucial parameter as it can be used as a reference to determine the right harvest time. Thus, this study proposed a near-infrared (NIR) spectroscopy as a fast and non-destructive analysis to assess oil palm water content. NIR spectra were processed using Shannon entropy to describe the characteristics at each wavelength. In this study, oil palm fruit samples at various maturity levels were collected with eight different maturity fractions. Based on the analysis, the Shannon entropy value is closely related to any changes in the water content of palm oil. The entropy value has a decreasing trend as the water content increases. The proposed technique can predict the water content of an oil palm with satisfactory performance with values of 0.9746 of coefficient of determination (R2) and 2,487 of root mean square error (RMSE). Application of this model will lead to a fast and accurate prediction system related to oil palm water content.","PeriodicalId":38060,"journal":{"name":"International Journal of Electrical and Computer Engineering","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43312325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
System of gender identification and age estimation from radiography: a review 射线照相的性别识别和年龄估计系统综述
International Journal of Electrical and Computer Engineering Pub Date : 2023-10-01 DOI: 10.11591/ijece.v13i5.pp5491-5500
Nur Nafi’iyah, C. Fatichah, D. Herumurti, E. Astuti, R. Putra, E. Prakasa, Yosi Kristian
{"title":"System of gender identification and age estimation from radiography: a review","authors":"Nur Nafi’iyah, C. Fatichah, D. Herumurti, E. Astuti, R. Putra, E. Prakasa, Yosi Kristian","doi":"10.11591/ijece.v13i5.pp5491-5500","DOIUrl":"https://doi.org/10.11591/ijece.v13i5.pp5491-5500","url":null,"abstract":"Under extreme conditions postmortem, dental radiography examinations can play an essential role in individual identification. In forensic odontology, individual identification traditionally compares antemortem dental records radiographs with those obtained on postmortem examination. As such, these traditional methods are vulnerable to oversights or mistakes in the individual identification of unidentified bodies. Digital technology can develop forensic odontology well. An automatic individual identification system is needed to support the forensic odontology process more easily and quickly because there are still opportunities to be created. We aimed to review the complete range of recent developments in identifying individuals from panoramic radiographs. We study methods in gender identification, age estimation, radiographic segmentation, performance analysis, and promising future directions.","PeriodicalId":38060,"journal":{"name":"International Journal of Electrical and Computer Engineering","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43560474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An effective feature selection using improved marine predators algorithm for Alzheimer’s disease classification 改进的海洋捕食者算法用于阿尔茨海默病分类的有效特征选择
International Journal of Electrical and Computer Engineering Pub Date : 2023-10-01 DOI: 10.11591/ijece.v13i5.pp5126-5134
P. Topannavar, D. M. Yadav
{"title":"An effective feature selection using improved marine predators algorithm for Alzheimer’s disease classification","authors":"P. Topannavar, D. M. Yadav","doi":"10.11591/ijece.v13i5.pp5126-5134","DOIUrl":"https://doi.org/10.11591/ijece.v13i5.pp5126-5134","url":null,"abstract":"Alzheimer’s disease (AD) is an irremediable neurodegenerative illness developed by the fast deterioration of brain cells. AD is mostly common in elder people and it extremely disturbs the physical and mental health of patients, therefore early detection is essential to prevent AD development. However, the precise detection of AD and mild cognitive impairment (MCI) is difficult during classification. In this paper, the Residual network i.e., ResNet-18 is used for extracting the features, and the proposed improved marine predators algorithm (IMPA) is developed for choosing the optimum features to perform an effective classification of AD. The multi-verse optimizer (MVO) used in the IMPA helps to balance exploration and exploitation, which leads to the selection of optimal relevant features. Further, the classification of AD is accomplished using the multiclass support vector machine (MSVM). Open access series of imaging studies-1 (OASIS-1) and Alzheimer disease neuroimaging initiative (ADNI) datasets are used to evaluate the IMPA-MSVM method. The performance of the IMPA-MSVM method is analyzed using accuracy, sensitivity, specificity, positive predictive value (PPV) and matthews correlation coefficient (MCC). The existing methods such as the deep learning-based segmenting method using SegNet (DLSS), mish activation function (MAF) with spatial transformer network (STN) and BrainNet2D are used to evaluate the IMPA-MSVM method. The accuracy of IMPA-MSVM for the ADNI dataset is 98.43% which is more when compared to the DLSS and MAF-STN.","PeriodicalId":38060,"journal":{"name":"International Journal of Electrical and Computer Engineering","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43693961","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An effective technique for increasing capacity and improving bandwidth in 5G narrow-band internet of things 一种提高5G窄带物联网容量和带宽的有效技术
International Journal of Electrical and Computer Engineering Pub Date : 2023-10-01 DOI: 10.11591/ijece.v13i5.pp5232-5242
A. Mohammed, H. Mostafa, A. A. Ammar
{"title":"An effective technique for increasing capacity and improving bandwidth in 5G narrow-band internet of things","authors":"A. Mohammed, H. Mostafa, A. A. Ammar","doi":"10.11591/ijece.v13i5.pp5232-5242","DOIUrl":"https://doi.org/10.11591/ijece.v13i5.pp5232-5242","url":null,"abstract":"In recent years, the wireless spectrum has become increasingly scarce as demand for wireless services has grown, requiring imaginative approaches to increase capacity within a limited spectral resource. This article proposes a new method that combines modified symbol time compression with orthogonal frequency division multiplexing (MSTC-OFDM), to enhance capacity for the narrow-band internet of things (NB-IoT) system. The suggested method, MSTC-OFDM, is based on the modified symbol time compression (MSTC) technique. The MSTC is a compressed waveform technique that increases capacity by compressing the occupied symbol time without losing bit error rate (BER) performance or data throughput. A comparative analysis is provided between the traditional orthogonal frequency division multiplexing (OFDM) system and the MSTC-OFDM method. The simulation results show that the MSTC-OFDM scheme drastically decreases the symbol time (ST) by 75% compared to a standard OFDM system. As a result, the MSTC-OFDM system offers four times the bit rate of a typical OFDM system using the same bandwidth and modulation but with a little increase in complexity. Moreover, compared to an OFDM system with 16 quadrature amplitude modulation (16QAM-OFDM), the MSTC-OFDM system reduces the signal-to-noise ratio (SNR) by 3.9 dB to transmit the same amount of data.","PeriodicalId":38060,"journal":{"name":"International Journal of Electrical and Computer Engineering","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49191145","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Performance analysis of smart optimization antenna for wireless networks 无线网络中智能优化天线的性能分析
International Journal of Electrical and Computer Engineering Pub Date : 2023-10-01 DOI: 10.11591/ijece.v13i5.pp5222-5231
Jacob Abraham, K. Suriyan, Beulah Jackson, Mahendran Natarajan, Thanga Mariappan Lakshmanaperumal
{"title":"Performance analysis of smart optimization antenna for wireless networks","authors":"Jacob Abraham, K. Suriyan, Beulah Jackson, Mahendran Natarajan, Thanga Mariappan Lakshmanaperumal","doi":"10.11591/ijece.v13i5.pp5222-5231","DOIUrl":"https://doi.org/10.11591/ijece.v13i5.pp5222-5231","url":null,"abstract":"Antenna design has significantly advanced as a result of the widespread need for wireless communications and data substitution through wireless devices. The research article's goal is to provide a conceptual framework, difficulties, and opportunities for a source as well as a general overview of the antenna used in wireless communications applications. In this proposed research, we will go over a variety of topics related to mobile communication and fifth generation (5G) technologies, including its pros and benefits. A thorough comparison between the expected properties of the antennas and each generation, from 1st generation (1G) to 5G, is also included. This article also provides an overview of the investigated 5G technologies and various antenna designs.","PeriodicalId":38060,"journal":{"name":"International Journal of Electrical and Computer Engineering","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49029086","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信