An effective feature selection using improved marine predators algorithm for Alzheimer’s disease classification

Q2 Computer Science
P. Topannavar, D. M. Yadav
{"title":"An effective feature selection using improved marine predators algorithm for Alzheimer’s disease classification","authors":"P. Topannavar, D. M. Yadav","doi":"10.11591/ijece.v13i5.pp5126-5134","DOIUrl":null,"url":null,"abstract":"Alzheimer’s disease (AD) is an irremediable neurodegenerative illness developed by the fast deterioration of brain cells. AD is mostly common in elder people and it extremely disturbs the physical and mental health of patients, therefore early detection is essential to prevent AD development. However, the precise detection of AD and mild cognitive impairment (MCI) is difficult during classification. In this paper, the Residual network i.e., ResNet-18 is used for extracting the features, and the proposed improved marine predators algorithm (IMPA) is developed for choosing the optimum features to perform an effective classification of AD. The multi-verse optimizer (MVO) used in the IMPA helps to balance exploration and exploitation, which leads to the selection of optimal relevant features. Further, the classification of AD is accomplished using the multiclass support vector machine (MSVM). Open access series of imaging studies-1 (OASIS-1) and Alzheimer disease neuroimaging initiative (ADNI) datasets are used to evaluate the IMPA-MSVM method. The performance of the IMPA-MSVM method is analyzed using accuracy, sensitivity, specificity, positive predictive value (PPV) and matthews correlation coefficient (MCC). The existing methods such as the deep learning-based segmenting method using SegNet (DLSS), mish activation function (MAF) with spatial transformer network (STN) and BrainNet2D are used to evaluate the IMPA-MSVM method. The accuracy of IMPA-MSVM for the ADNI dataset is 98.43% which is more when compared to the DLSS and MAF-STN.","PeriodicalId":38060,"journal":{"name":"International Journal of Electrical and Computer Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical and Computer Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijece.v13i5.pp5126-5134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

Alzheimer’s disease (AD) is an irremediable neurodegenerative illness developed by the fast deterioration of brain cells. AD is mostly common in elder people and it extremely disturbs the physical and mental health of patients, therefore early detection is essential to prevent AD development. However, the precise detection of AD and mild cognitive impairment (MCI) is difficult during classification. In this paper, the Residual network i.e., ResNet-18 is used for extracting the features, and the proposed improved marine predators algorithm (IMPA) is developed for choosing the optimum features to perform an effective classification of AD. The multi-verse optimizer (MVO) used in the IMPA helps to balance exploration and exploitation, which leads to the selection of optimal relevant features. Further, the classification of AD is accomplished using the multiclass support vector machine (MSVM). Open access series of imaging studies-1 (OASIS-1) and Alzheimer disease neuroimaging initiative (ADNI) datasets are used to evaluate the IMPA-MSVM method. The performance of the IMPA-MSVM method is analyzed using accuracy, sensitivity, specificity, positive predictive value (PPV) and matthews correlation coefficient (MCC). The existing methods such as the deep learning-based segmenting method using SegNet (DLSS), mish activation function (MAF) with spatial transformer network (STN) and BrainNet2D are used to evaluate the IMPA-MSVM method. The accuracy of IMPA-MSVM for the ADNI dataset is 98.43% which is more when compared to the DLSS and MAF-STN.
改进的海洋捕食者算法用于阿尔茨海默病分类的有效特征选择
阿尔茨海默病(AD)是一种不可治愈的神经退行性疾病,由脑细胞的快速退化发展而来。阿尔茨海默病多见于老年人,严重影响患者的身心健康,因此早期发现是预防阿尔茨海默病发展的关键。然而,在分类中,精确检测AD和轻度认知障碍(MCI)是困难的。本文利用ResNet-18残差网络进行特征提取,并提出改进的海洋捕食者算法(IMPA),选择最优特征对AD进行有效分类。IMPA中使用的多重宇宙优化器(MVO)有助于平衡探索和开发,从而选择最优的相关特征。在此基础上,利用多类支持向量机(MSVM)对AD进行分类。开放获取系列影像学研究-1 (OASIS-1)和阿尔茨海默病神经影像学倡议(ADNI)数据集用于评估IMPA-MSVM方法。通过准确性、敏感性、特异性、阳性预测值(PPV)和马修斯相关系数(MCC)对IMPA-MSVM方法的性能进行了分析。利用基于深度学习的基于SegNet的分割方法(DLSS)、基于空间变压器网络(STN)的模糊激活函数(MAF)和BrainNet2D等方法对IMPA-MSVM方法进行了评价。IMPA-MSVM在ADNI数据集上的准确率为98.43%,高于DLSS和MAF-STN。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Electrical and Computer Engineering
International Journal of Electrical and Computer Engineering Computer Science-Computer Science (all)
CiteScore
4.10
自引率
0.00%
发文量
177
期刊介绍: International Journal of Electrical and Computer Engineering (IJECE) is the official publication of the Institute of Advanced Engineering and Science (IAES). The journal is open to submission from scholars and experts in the wide areas of electrical, electronics, instrumentation, control, telecommunication and computer engineering from the global world. The journal publishes original papers in the field of electrical, computer and informatics engineering which covers, but not limited to, the following scope: -Electronics: Electronic Materials, Microelectronic System, Design and Implementation of Application Specific Integrated Circuits (ASIC), VLSI Design, System-on-a-Chip (SoC) and Electronic Instrumentation Using CAD Tools, digital signal & data Processing, , Biomedical Transducers and instrumentation, Medical Imaging Equipment and Techniques, Biomedical Imaging and Image Processing, Biomechanics and Rehabilitation Engineering, Biomaterials and Drug Delivery Systems; -Electrical: Electrical Engineering Materials, Electric Power Generation, Transmission and Distribution, Power Electronics, Power Quality, Power Economic, FACTS, Renewable Energy, Electric Traction, Electromagnetic Compatibility, High Voltage Insulation Technologies, High Voltage Apparatuses, Lightning Detection and Protection, Power System Analysis, SCADA, Electrical Measurements; -Telecommunication: Modulation and Signal Processing for Telecommunication, Information Theory and Coding, Antenna and Wave Propagation, Wireless and Mobile Communications, Radio Communication, Communication Electronics and Microwave, Radar Imaging, Distributed Platform, Communication Network and Systems, Telematics Services and Security Network; -Control[...] -Computer and Informatics[...]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信