Yu Liu , Xinyao Chen , Jun Guo , Longtao Deng , Zhenjun Li , Chunqian Zhang , Jin Cheng , Junming Li
{"title":"Comparative study on defect passivation of tin-based perovskite solar cells modified by phenylethylammonium salts (PEAX, X=Cl, I, Br)","authors":"Yu Liu , Xinyao Chen , Jun Guo , Longtao Deng , Zhenjun Li , Chunqian Zhang , Jin Cheng , Junming Li","doi":"10.1016/j.jssc.2025.125293","DOIUrl":"10.1016/j.jssc.2025.125293","url":null,"abstract":"<div><div>Tin-based perovskite solar cells are a new type of photovoltaic technology. Tin-based perovskite solar cells use tin instead of traditional lead for the sake of environmental friendliness. Currently, the key challenges lie in solving the problems of low filling factor, low short-circuit current density, and low open-circuit voltage, which together lead to the overall performance decline in the cells. In this context, we conducted a detailed comparative analysis of the defect state passivation on the surface and interface of tin-based perovskite using phenethylammonium salts (PEAX, X = Cl, I, Br). The results show that doping PEAX in perovskite can improve the morphology, and hydrophobicity of the thin film. At the same time, the carrier recombination lifetime of the device modified by PEAX increases, and the carrier transport lifetime decreases. This indicates that the passivated device has a lower recombination rate and an increased charge transfer rate after illumination, thus reducing carrier recombination. In addition, the embedded electric field and composite resistance of the devices doped with PEAX are increased, and the density of defect states is decreased, which promotes carrier transfer, inhibits dark-state recombination, thereby improving the filling factor, short-circuit current density and open-circuit voltage of the device, and further improving the power conversion efficiency of the device. It is worth noting that among the three PEAX materials used for passivation, PEACl has the best passivation effect, and the highest efficiency of the device after PEACl passivation is 5.74 %. The study provides useful information on passivation methods for tin-based perovskite solar cells.</div></div>","PeriodicalId":378,"journal":{"name":"Journal of Solid State Chemistry","volume":"346 ","pages":"Article 125293"},"PeriodicalIF":3.2,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143511255","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xin-Ya Zhang , Pei-Pei Yin , Shu-Yao Yang , Yan Li , Ao Zhang , Kun-Yan Fu , Xiao-Gang Yang , Lu-Fang Ma
{"title":"Charge transfer of acridine based hybrid metal halide for light-emitting diode","authors":"Xin-Ya Zhang , Pei-Pei Yin , Shu-Yao Yang , Yan Li , Ao Zhang , Kun-Yan Fu , Xiao-Gang Yang , Lu-Fang Ma","doi":"10.1016/j.jssc.2025.125292","DOIUrl":"10.1016/j.jssc.2025.125292","url":null,"abstract":"<div><div>The development of charge transfer materials accompanied by local excited state have been extensively studied in recent years owing to their potential applications in the field of photodetector, photocatalytic and solid-state lighting. Herein, the assembly of acridine (AD) organic cations and [ZnCl<sub>4</sub>]<sup>2-</sup> anions afforded one organic–inorganic hybrid complex [(AD)<sub>2</sub>(ZnCl<sub>4</sub>)] (<strong>1</strong>), which can be facilely synthesized in ethanol solution at room temperature for a few minutes. The alternately arranged AD cation π-conjugated system and [ZnCl<sub>4</sub>]<sup>2-</sup> inorganic anion tetrahedrons enable this hybrid complex with the mixture of local excited and charge transfer characteristic. It shows bright green light emission with long lifetime of 16.31 ns and quantum yield of 53 %. Theoretical calculations provided detailed energy level, band gap and charge distribution information of <strong>1</strong>. Successful fabrication of green phosphor-converted light-emitting diode (LED) device making this hybrid complex perfect candidate for solid-state lighting material.</div></div>","PeriodicalId":378,"journal":{"name":"Journal of Solid State Chemistry","volume":"346 ","pages":"Article 125292"},"PeriodicalIF":3.2,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143511254","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Maomao Guo , Wenhui Zhang , Wenhua Pang , Zherui Zhang , Zhuangzhuang Xiong , Qizi Wu , Fuqiu Ma , Guixiang Wang
{"title":"Synthesis of mixed ligand MOF-BBZ and adsorption of U(VI) in seawater","authors":"Maomao Guo , Wenhui Zhang , Wenhua Pang , Zherui Zhang , Zhuangzhuang Xiong , Qizi Wu , Fuqiu Ma , Guixiang Wang","doi":"10.1016/j.jssc.2025.125277","DOIUrl":"10.1016/j.jssc.2025.125277","url":null,"abstract":"<div><div>Efficient uranium extraction from seawater requires adsorbents with high capacity and selectivity. A zirconium-based metal-organic framework (MOF-BBZ) was synthesized via a one-pot method employing 1,3-benzenedicarboxylic acid (H<sub>2</sub>BDC) and 1,3,5-benzenetricarboxylic acid (H<sub>3</sub>BTC) as mixed ligands. Structural characterization by FT-IR, TGA, and XRD confirmed its robustness. At pH 10, MOF-BBZ achieved a maximum U(VI) adsorption capacity of 361.6 mg/g (C<sub>0</sub> = 50 mg/L,T = 298.15 K). The Freundlich isotherm and pseudo-second-order kinetics best described adsorption behavior, while thermodynamic analysis indicated spontaneity (ΔG = −4.812 kJ/mol) and endothermicity (ΔH = 19.055 kJ/mol). Crucially, MOF-BBZ maintained >77.0 % U(VI) selectivity in seawater containing competing ions (e.g., Zn<sup>2+</sup>, Pb<sup>2+</sup>), demonstrating its practical potential for uranium recovery.</div></div>","PeriodicalId":378,"journal":{"name":"Journal of Solid State Chemistry","volume":"346 ","pages":"Article 125277"},"PeriodicalIF":3.2,"publicationDate":"2025-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143511294","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhiyuan Jin, Chang Liu, Yuhang Du, Guohong Tang, Chi Wang, Wei Huang, Baojun Chen, Zhiyu He
{"title":"Growth and characterization of CsCu2I3 single crystal for X-ray detection with a modified Bridgman method","authors":"Zhiyuan Jin, Chang Liu, Yuhang Du, Guohong Tang, Chi Wang, Wei Huang, Baojun Chen, Zhiyu He","doi":"10.1016/j.jssc.2025.125288","DOIUrl":"10.1016/j.jssc.2025.125288","url":null,"abstract":"<div><div>Lead-free copper halide CsCu<sub>2</sub>I<sub>3</sub> crystal is a potential detector material for high-energy rays because of its wide band gap (3.54 eV), large relative molecular mass, strong absorption of high-energy rays, and low hygroscopicity in the air environment. In this study, a single crystal of CsCu<sub>2</sub>I<sub>3</sub> with 27 mm in diameter and 55 mm in length, the largest reported size, was successfully grown using a modified Bridgman method. It has a high degree of transparency and the transmittance is more than 90 % in the range of 4∼22 μm. An Au/CsCu<sub>2</sub>I<sub>3</sub> SC/Au detector was fabricated and tested, showing a resistivity of 1.08 × 10<sup>11</sup> Ω cm. The X-ray responsivity of CsCu<sub>2</sub>I<sub>3</sub> single crystals was investigated using a corresponding high-energy ray detector. The device exhibited a fast response time (<0.1 s), a high switching ratio (180), and a response sensitivity of 77.61 μC·Gy<sub>air</sub><sup>−1</sup>·cm<sup>−1</sup> under an electric field strength of 10 V mm<sup>−1</sup>. The successful growth of such a large CsCu<sub>2</sub>I<sub>3</sub> single crystal demonstrates the potential for producing high-quality single crystals, which are essential for practical applications.</div></div>","PeriodicalId":378,"journal":{"name":"Journal of Solid State Chemistry","volume":"346 ","pages":"Article 125288"},"PeriodicalIF":3.2,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143488788","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiaoying Nie , Xue Han , Shandong Yu , Wei Liu , Yu Yang
{"title":"Embedding gold nanoclusters in metal-organic frameworks as a dual-channel hydrogel optical sensor for hydrogen sulfide detection","authors":"Xiaoying Nie , Xue Han , Shandong Yu , Wei Liu , Yu Yang","doi":"10.1016/j.jssc.2025.125283","DOIUrl":"10.1016/j.jssc.2025.125283","url":null,"abstract":"<div><div>Simple, efficient, and real-time monitoring technologies for hydrogen sulfide (H<sub>2</sub>S) are essential considering its significance role in environmental and physiological scenarios. However, on-site detection of H<sub>2</sub>S is challenged by weak anti-interference capability, poor selectivity, and complex operation. Here, we introduce a dual-channel hydrogel sensor combining fluorescence and colorimetric channels, which is portable for H<sub>2</sub>S detection. By adopting the \"bottle-around-ship\" strategy to incorporate gold nanoclusters (AuNCs) within metal-organic-frameworks (MOFs), the luminescence efficiency and stability of the sensor were enhanced, which can be ascribed to the spatial confinement effect. This composite material exhibits low detection limits (5.4 μM), rapid response (<30 s), robust resistance to interference, and integration capabilities with smartphones. The independent fluorescence and colorimetric channels of the hydrogel sensor enable selective H<sub>2</sub>S responses when exposed to UV and visible light. Additionally, by combining dual-mode responses with logic devices, this hydrogel platform enables fast and precise H<sub>2</sub>S identification. This approach presents a promising pathway for advancing portable H<sub>2</sub>S detection technologies.</div></div>","PeriodicalId":378,"journal":{"name":"Journal of Solid State Chemistry","volume":"346 ","pages":"Article 125283"},"PeriodicalIF":3.2,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143510707","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xia Shao , Zhida Tan , Lei Xia , Yanlin Guo , Shaoxun Li , Simiao Sha , Jiancheng Li , Qun Luo , Wenxian Li , Bin Liu , Qian Li
{"title":"Theoretical investigation on aging precipitation mechanisms and precipitation strengthening effect of Mg-Gd alloy","authors":"Xia Shao , Zhida Tan , Lei Xia , Yanlin Guo , Shaoxun Li , Simiao Sha , Jiancheng Li , Qun Luo , Wenxian Li , Bin Liu , Qian Li","doi":"10.1016/j.jssc.2025.125285","DOIUrl":"10.1016/j.jssc.2025.125285","url":null,"abstract":"<div><div>Magnesium gadolinium (Mg-Gd) alloys have received increasing attention as the lightest structural materials. Although a large number of experimental results have been reported, the aging precipitation mechanism of Mg-Gd alloys is still unclear. In this work, the elastic strain energy, formation energy, and interface energy of existed precipitates in Mg-Gd alloy is studied, and their underlying mechanism is analyzed. It is found that the habit planes of β′, β<sub>F</sub>′ and β<sub>T</sub> are the (100) plane (or the (11 <span><math><mover><mn>2</mn><mo>-</mo></mover></math></span> 0) plane in the hexagonal system), but β″ cannot form long-range ordered structures. The phase transition resistance of β<sub>F</sub>′ is greater than that of β′, causing β<sub>F</sub>′ to precipitate after β′, while the negative interface energy and larger strain energy lead to the precipitation of β<sub>T</sub> after β′. Moreover, the influence of the size and volume fraction of precipitates on the strengthening effect caused by precipitates is also calculated. The strengthening effect of β′ is predicted to be the best among the four coherent precipitates. These findings offer guidelines for the design of high-performance Mg-Gd alloys.</div></div>","PeriodicalId":378,"journal":{"name":"Journal of Solid State Chemistry","volume":"346 ","pages":"Article 125285"},"PeriodicalIF":3.2,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143510709","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kexin Li , Huifang Zhang , Mingzhe Dong , Zhongmei Song , Mingzhen Li , Chunyan Wang , Haining Liu , Xiushen Ye , Guosheng Shi , Zhijian Wu
{"title":"Acceleration of the pyrolysis of magnesium chloride hexahydrate by graphene","authors":"Kexin Li , Huifang Zhang , Mingzhe Dong , Zhongmei Song , Mingzhen Li , Chunyan Wang , Haining Liu , Xiushen Ye , Guosheng Shi , Zhijian Wu","doi":"10.1016/j.jssc.2025.125287","DOIUrl":"10.1016/j.jssc.2025.125287","url":null,"abstract":"<div><div>Anhydrous magnesium chloride is a conventional raw material for the electrolytic production of magnesium metal. Its preparation contributes about 50 % of the overall cost of the electrolytic production of magnesium metal. The search for a new process for the preparation of anhydrous magnesium chloride at a low cost has attracted much attention. In this study, the effects of graphene on the pyrolysis of MgCl<sub>2</sub>⋅6H<sub>2</sub>O were investigated by comparing the thermal decomposition processes of MgCl<sub>2</sub>·6H<sub>2</sub>O and MgCl<sub>2</sub>·6H<sub>2</sub>O-graphene, using TG, DTG, DSC, XRD, FTIR techniques and theoretical calculations. It was found that the addition of graphene can reduce the energy barrier for the pyrolysis of MgCl<sub>2</sub>⋅6H<sub>2</sub>O, accelerate the pyrolysis reactions, reduce the reaction temperature and energy consumption. The cation-π interactions between graphene and Mg<sup>2+</sup>, and the good thermal conductivity of graphene accelerate the thermal decomposition. The results obtained would be helpful for understanding the decomposition processes and mechanisms of MgCl<sub>2</sub>·6H<sub>2</sub>O under the assistance of graphene, and for exploring new techniques for MgCl<sub>2</sub>·6H<sub>2</sub>O dehydration.</div></div>","PeriodicalId":378,"journal":{"name":"Journal of Solid State Chemistry","volume":"346 ","pages":"Article 125287"},"PeriodicalIF":3.2,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143480024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ying Zhu , Zhao Li , Jingjing Wang , Zhaozhao Zhu , Rui Wu , Xiaobin Niu , Jinxia Jiang , Hanchao Li , Jun Song Chen
{"title":"Encapsulating tin disulfide nanoparticles in carbon nanofibers for durable sodium storage","authors":"Ying Zhu , Zhao Li , Jingjing Wang , Zhaozhao Zhu , Rui Wu , Xiaobin Niu , Jinxia Jiang , Hanchao Li , Jun Song Chen","doi":"10.1016/j.jssc.2025.125279","DOIUrl":"10.1016/j.jssc.2025.125279","url":null,"abstract":"<div><div>Due to its unique layered structure and high theoretical capacity, tin disulfide (SnS<sub>2</sub>) is regarded as a promising anode material for sodium-ion batteries. However, its practical application has been hindered by relatively poor conductivity and severe volumetric changes during cycling. Herein, carbon nanofiber encapsulated SnS<sub>2</sub> nanoparticles, SnS<sub>2</sub>@CNF, has been synthesized via a gaseous sulfidation process from a Sn-based metal-organic compound (Sn-MOC)@PAN electrospun precursor. Benefiting from precise control of the SnS<sub>2</sub> particle size, sodium-ion transport has been facilitated with superior sodium storage performance. The SnS<sub>2</sub>@CNF anode exhibits long-term cycling stability (457 mAh g<sup>−1</sup> after 1500 cycles at 5 A g<sup>−1</sup>) and high reversible capacity (661 mAh g<sup>−1</sup> after 100 cycles at 0.5 A g<sup>−1</sup>). When paired with the Na<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub> cathode, the SnS<sub>2</sub>@CNF//NVP presented an energy density of 161 Wh kg<sup>−1</sup>, indicating its significant potential for practical applications.</div></div>","PeriodicalId":378,"journal":{"name":"Journal of Solid State Chemistry","volume":"346 ","pages":"Article 125279"},"PeriodicalIF":3.2,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143480212","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Chemical clipping-driven electronic structure modulation in bimetallic Fe/Ni-MOFs for enhanced oxygen evolution reaction","authors":"Yuan Tian, Yong-Qiang Chen, Guo-Li Yang, Zhao-Hui Guo, Kai Li, Hai-Peng Wu","doi":"10.1016/j.jssc.2025.125286","DOIUrl":"10.1016/j.jssc.2025.125286","url":null,"abstract":"<div><div>Bond breaking has become an innovative approach for post-synthetic modification of pore structures in metal–organic frameworks, enabling the creation of pore environments that cannot be achieved through conventional methods. Herein, a series of hierarchical porous bimetallic MOF-based electrocatalysts were prepared through an advanced chemical clipping technique, involving the introduction of Fe and selective removal of Ni centers to tailor the porosity of the Ni-BTC frameworks (HP-Ni<sub>x</sub>/Fe<sub>100-x</sub>-BTC, BTC = 1,3,5-trimesic acid). By controlling the concentration of 2-methylimidazole, the crystallographic morphology of HP-Fe<sub>50</sub>/Ni<sub>50</sub>-BTC we precisely regulated, enabling the formation of complex polyhedral structures such as octahedra, truncated tetrahedra and regular tetrahedra. The electrocatalytic oxygen evolution efficiency was significantly increased and the current density was enhanced through structure modulation. The optimized HP-Fe<sub>50</sub>/Ni<sub>50</sub>-BTC-1 constructs achieved substantially lower OER overpotentials reached as low as 258 mV and Tafel slopes of 48.79 mV dec<sup>−1</sup>. Additionally, these materials demonstrated robust stability, maintaining performance over 35 h under operational conditions. Furthermore, density functional theory (DFT) calculations reveal that the modulated d-band center of HP-Fe<sub>50</sub>/Ni<sub>50</sub>-BTC-1 directs the flow of electrons, resulting in the enhancement the rate-determining step, and improves the adsorption capacity for intermediates during the oxygen evolution reaction (OER). These findings underscore the transformative potential of precise molecular engineering in metal-organic frameworks, advancing the paradigm of catalyst design by enabling microstructural control to optimize electrochemical properties.</div></div>","PeriodicalId":378,"journal":{"name":"Journal of Solid State Chemistry","volume":"346 ","pages":"Article 125286"},"PeriodicalIF":3.2,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143474684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effect of nonstoichiometry on the Hall effect, Nernst‒Ettingshausen effect, and electrosound in (MnSe)1‒х(Tm0.76Se)х manganese selenides","authors":"S.S. Aplesnin , A.M. Kharkov , M.N. Sitnikov , N.A. Cheremnykh , O.S. Nikitinskiy , O.B. Romanova , A.V. Shabanov","doi":"10.1016/j.jssc.2025.125284","DOIUrl":"10.1016/j.jssc.2025.125284","url":null,"abstract":"<div><div>―In nonstoichiometric (MnSe)<sub>1‒х</sub>(Tm<sub>0.76</sub>Se)<sub>х</sub> manganese selenide, the temperature and concentration regions with the same sign of carriers determined from the Hall constant and thermoelectric power have been found. The correlation of the temperature dependences of the thermopower and electrosound has been explained within the polaron model. A change in the sign of the longitudinal and transverse Nernst‒Ettingshausen coefficients upon variation in temperature and concentration has been detected. The agree of the temperature dependences of the Nernst‒Ettingshausen coefficients with a change in the electrosound in a magnetic field has been established. The maxima of the thermopower and Nernst‒Ettingshausen coefficients versus temperature have been explained within the model of coupled electron‒hole pairs with dissociation of the pairs and pinning of coupled polarons.</div></div>","PeriodicalId":378,"journal":{"name":"Journal of Solid State Chemistry","volume":"346 ","pages":"Article 125284"},"PeriodicalIF":3.2,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143488789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}