Tiago H.S. Souza , José F. Sarmento-Neto , Sueden O. Souza , Bruno L. Raposo , Bruna P. Silva , Christiane P.F. Borges , Beate S. Santos , Paulo E. Cabral Filho , Júlio S. Rebouças , Adriana Fontes
{"title":"Advances on antimicrobial photodynamic inactivation mediated by Zn(II) porphyrins","authors":"Tiago H.S. Souza , José F. Sarmento-Neto , Sueden O. Souza , Bruno L. Raposo , Bruna P. Silva , Christiane P.F. Borges , Beate S. Santos , Paulo E. Cabral Filho , Júlio S. Rebouças , Adriana Fontes","doi":"10.1016/j.jphotochemrev.2021.100454","DOIUrl":"https://doi.org/10.1016/j.jphotochemrev.2021.100454","url":null,"abstract":"<div><p>Over the years, microorganisms have developed several resistance mechanisms against standard treatments, thus limiting the effect of drugs and rendering ineffective therapies. Considering the growing number of resistant pathogens and adverse effects of conventional therapies, new antimicrobial technologies able to provide more effective, rapid, and safer treatments to inactivate pathogens, with unlikely chances of inducing resistance, are needed. In this regard, antimicrobial photodynamic inactivation (aPDI) has emerged as an alternative modality of treatment. In particular, Zn(II) porphyrins (ZnPs) hold great potential as photosensitizers (PSs) for aPDI and have been attracting increasing attention. The chemical structure of ZnPs can be tailored to produce PSs with improved chemical stability and photophysical properties, also modulating their amphiphilic and ionic characters, bioavailability, and (sub)cellular distribution. Thus, in this review, we provide a detailed report of studies published in about the last 10 years (2010–2021) focusing on aPDI mediated by ZnPs over a variety of pathogens, including bacteria, fungi, viruses, and protozoa. Fundamentals of aPDI, and porphyrin and its derivatives, especially ZnPs, are also included herein. We hope that this review can guide and be a reference for future studies related to aPDI mediated by ZnPs, and encourages more detailed studies on ZnP photophysical and photochemical properties, aiming to improve the fight against infectious diseases.</p></div>","PeriodicalId":376,"journal":{"name":"Journal of Photochemistry and Photobiology C: Photochemistry Reviews","volume":"49 ","pages":"Article 100454"},"PeriodicalIF":13.6,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jphotochemrev.2021.100454","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"1745219","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Interfacial charge transfer in carbon nitride heterojunctions monitored by optical methods","authors":"Emma Mitchell , Abigail Law , Robert Godin","doi":"10.1016/j.jphotochemrev.2021.100453","DOIUrl":"https://doi.org/10.1016/j.jphotochemrev.2021.100453","url":null,"abstract":"<div><p>Solar energy conversion is inciting tremendous research efforts in many fields due to the vast potential of sunlight as a sustainable energy source. For solar energy to become widely used and become a major component of our energy mix, energy storage on large scales must be addressed and the components used must be abundant. Artificial photosynthesis to produce solar fuels holds promise as a way to convert solar energy into storable energy. Organic photocatalysts have rapidly established themselves as a viable alternative to inorganic systems. Organic photocatalyst can be prepared from inexpensive precursors and offer a synthetic versatility and tunability that can be exploited to improve efficiencies. Carbon nitride (CN<sub>x</sub>) has emerged as a leading organic photocatalyst with advantageous chemical and photo stabilities. Recombination of photogenerated electrons and holes limit the efficiency of CN<sub>x</sub> materials below levels necessary to become a viable energy production system. To improve the efficiency and key characteristics such as light harvesting, charge carrier lifetime, and interfacial rate of charge transfer, a second material is put in contact with CN<sub>x</sub> to form a heterojunction. While there are many examples of heterojunctions improving the photocatalytic activity beyond that of the isolated CN<sub>x</sub>, we are still lacking the deep understanding of charge carrier dynamics necessary to rationalize the improvements and design optimal junctions. This review covers the studies of CN<sub>x</sub> heterojunctions that have used optical methods to monitor the charge carrier dynamics. Time-resolved photoluminescence (TRPL) is the most common technique used and there are many examples that have used transient absorption spectroscopy (TAS) to probe the charge carrier dynamics. However, attempting to link the lifetime change to the activity differences does not yield a clear trend. It is likely that the reactive charges are not consistently being monitored and is obscuring the expected correlations. Both shorter and longer charge carrier lifetimes can be observed with both TRPL and TAS techniques and can be interpreted as arising from interfacial charge separation. Even when the same materials are used in the junction there is no consistency in observing a shorter or longer lifetime. The holistic view of charge carrier dynamics in CN<sub>x</sub> heterojunctions presented here intends to identify overarching themes from a wide range of CN<sub>x</sub>-containing systems and help take stock of where our current understanding stands. More specific spectral assignments and linking the observed lifetimes to certain photophysical or photochemical processes are needed to build models to help us understand the links between the charge carrier dynamics and the activity. These are crucial to develop general strategies that will lead to optimal CN<sub>x</sub> heterojunctions.</p></div>","PeriodicalId":376,"journal":{"name":"Journal of Photochemistry and Photobiology C: Photochemistry Reviews","volume":"49 ","pages":"Article 100453"},"PeriodicalIF":13.6,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"1742901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sunil SeethaLekshmi , Tejender S. Thakur , Sunil Varughese
{"title":"Photoinstability in active pharmaceutical ingredients: Crystal engineering as a mitigating measure","authors":"Sunil SeethaLekshmi , Tejender S. Thakur , Sunil Varughese","doi":"10.1016/j.jphotochemrev.2021.100455","DOIUrl":"https://doi.org/10.1016/j.jphotochemrev.2021.100455","url":null,"abstract":"<div><p>Cocrystallization has evolved as an attractive prospect to broaden the chemical landscape of a drug entity, expand its therapeutic scope, and address physicochemical deficiencies of an active pharmaceutical ingredient (API). The non-covalent approaches to address the solubility and bioavailability of BCS Class-II and Class-IV drugs is an archetypal example and is a prolific topic. The present review highlights various supramolecular methods employed in addressing the photoinstability in drugs, emphasizing crystal engineering approaches. Because a greater proportion of the drugs are formulated in the solid-state, the structural factors—crystal packing, intermolecular interactions, packing density—remain a critical determinant in the observed extent of stability. Comprehending and amending these structural determinants using crystal engineering concepts proposes to address the photoinstability in drugs. Also, we highlight the pros and cons of the different adopted strategies in terms of formulation and the underlying challenges and put in prospect. The review provides a correlative assessment of the structure-property relations that could further augment the foundations of factual knowledge in drug stability.</p></div>","PeriodicalId":376,"journal":{"name":"Journal of Photochemistry and Photobiology C: Photochemistry Reviews","volume":"49 ","pages":"Article 100455"},"PeriodicalIF":13.6,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2261308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
H. Ikeda, T. Hirano, K. Wakamatsu, Takanori Suzuki, E. Hasegawa
{"title":"Obituary for Professor Toshio Mukai","authors":"H. Ikeda, T. Hirano, K. Wakamatsu, Takanori Suzuki, E. Hasegawa","doi":"10.1016/j.jphotochemrev.2021.100451","DOIUrl":"https://doi.org/10.1016/j.jphotochemrev.2021.100451","url":null,"abstract":"","PeriodicalId":376,"journal":{"name":"Journal of Photochemistry and Photobiology C: Photochemistry Reviews","volume":"1 1","pages":""},"PeriodicalIF":13.6,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44603809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Eun-Bi Kim , M. Shaheer Akhtar , Hyung-Shik Shin , Sadia Ameen , Mohammad Khaja Nazeeruddin
{"title":"A review on two-dimensional (2D) and 2D-3D multidimensional perovskite solar cells: Perovskites structures, stability, and photovoltaic performances","authors":"Eun-Bi Kim , M. Shaheer Akhtar , Hyung-Shik Shin , Sadia Ameen , Mohammad Khaja Nazeeruddin","doi":"10.1016/j.jphotochemrev.2021.100405","DOIUrl":"https://doi.org/10.1016/j.jphotochemrev.2021.100405","url":null,"abstract":"<div><p>Perovskite solar cells (PSCs) fabricated with two-dimensional (2D) halide and 2D-3D mixed-halide materials are remarkable for their optoelectronic properties. The 2D perovskite structures are extremely stable but show limited charge transport and large bandgap for solar cell applications. To overcome these challenges, multidimensional 2D-3D perovskite materials are used to maintain simultaneously, a long-term stability, and high performance. In this review, we discuss the recent progress and the advantages of 2D and 2D-3D perovskite materials as absorber for solar cell applications. First, we discuss the structure and the unique properties of 2D and multidimensional 2D-3D perovskites materials. Second, the stability of 2D and 2D-3D mixed perovskites and the perspects of PSCs are hashed out.</p></div>","PeriodicalId":376,"journal":{"name":"Journal of Photochemistry and Photobiology C: Photochemistry Reviews","volume":"48 ","pages":"Article 100405"},"PeriodicalIF":13.6,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jphotochemrev.2021.100405","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2802546","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Overview of cationic phthalocyanines for effective photoinactivation of pathogenic microorganisms","authors":"Cláudia P.S. Ribeiro, Leandro M.O. Lourenço","doi":"10.1016/j.jphotochemrev.2021.100422","DOIUrl":"https://doi.org/10.1016/j.jphotochemrev.2021.100422","url":null,"abstract":"<div><p><span>Phthalocyanine (Pc) dyes are photoactive compounds that can absorb and emit light in a large range of the UV–vis spectrum, with recognized potential for medical applications. Considering the low solubility of Pc macrocycles in water, it is important to use cationic symptoms on their skeleton to improve their amphiphilicity for biomedical applications. The use of suitable pyridinium groups on Pc is a good strategy to solve this drawback and make them more eff ;ective to photoinactivate microorganisms </span><em>via</em> a photodynamic inactivation (PDI) approach. This review focuses the synthesis of quaternized Pc dyes, their photophysical and photochemical properties, and their antimicrobial photoinactivation efficiency. This innovative study compares, for the first time, different cationic moieties on Pc taking into account the efficiency of singlet oxygen (<sup>1</sup>O<sub>2</sub><span>), quantum yield (Φ</span><sub>Δ</sub><span>) generation, fluorescence quantum yield (Φ</span><sub>F</sub><span>), (photo)stability, light irradiation type (visible/white and/or red light), maximized overlapped absorption effect of Pc (S- and/or Q-band) </span><em>vs</em> light system irradiation type, and water solubility (<em>n</em>-octanol/water partition coefficient, P<sub>o/w</sub>), when these parameters are determined and provided in the multidisciplinary reports. This approach is also relevant to conjugate free-base (H<sub>2</sub>Pc) and metalated phthalocyanines (MPc, M = Zn<sup>2+</sup>, Mg<sup>2+</sup>, In<sup>3+</sup>, Ga<sup>3+</sup>, Ge<sup>3+</sup>, Si<sup>4+</sup>, etc.) with aromatic or aliphatic substituents linked by <em>N</em>, <em>O</em> or <em>S</em><span> atoms on the peripheral or axial positions of the Pc structures, such as e.g. (methoxy, oxy, or thio)pyridinium, ammonium, or benzimidazolium units, etc. Here, the influence of the structural peripheral (α- and/or β-position of Pc) or axial substituents type, number and positive charge position that can affect the PDI process will be analysed. These aspects are important to design versatile molecules that can interact with pathogenic microorganisms of variable size, subcellular architecture, biochemical composition, and susceptibility to externally added chemical agents. This review highlights the important developments of several modifications of cationic Pc dyes for the PDI of microorganisms, such as pathogenic bacteria, fungi, and virus.</span></p></div>","PeriodicalId":376,"journal":{"name":"Journal of Photochemistry and Photobiology C: Photochemistry Reviews","volume":"48 ","pages":"Article 100422"},"PeriodicalIF":13.6,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jphotochemrev.2021.100422","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2802545","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Recent developments of perylene diimide (PDI) supramolecular photocatalysts: A review","authors":"Yi Li, Xinling Zhang, Di Liu","doi":"10.1016/J.JPHOTOCHEMREV.2021.100436","DOIUrl":"https://doi.org/10.1016/J.JPHOTOCHEMREV.2021.100436","url":null,"abstract":"","PeriodicalId":376,"journal":{"name":"Journal of Photochemistry and Photobiology C: Photochemistry Reviews","volume":"96 1","pages":"100436"},"PeriodicalIF":13.6,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80409856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Two-photon uncaging of bioactive compounds: Starter guide to an efficient IR light switch","authors":"Maxime Klausen , Mireille Blanchard-Desce","doi":"10.1016/j.jphotochemrev.2021.100423","DOIUrl":"https://doi.org/10.1016/j.jphotochemrev.2021.100423","url":null,"abstract":"<div><p><span>Triggering physiological responses with a light switch has become a reality with the development of smart molecular probes such as photolabile protecting groups (PPGs), able to “uncage” biological ligands on demand. To make the light switch virtually harmless and confine the excitation to the single-cell level, the caged ligands can be released using two-photon (2P) absorption and 2P </span>microscopy<span> using red/infrared light. This exceptional level of precision however comes at the cost of a reduced photosensitivity and a poor compatibility of early PPGs with 2P excitation. This review aims to provide a tutorial guidebook to the design of 2P-sensitive PPGs suitable for optobiology by discussing challenges, strategies and progress in uncaging of bioactive compounds. To do so, we first recall the photo-physical principles governing 2P absorption, and the resulting ground rules in the design of efficient 2P absorbing organic dyes. We then detail how following these guidelines has led to tremendous progress in the development of a new generation of caged compounds, and the implications in the fields of biophotonics, from neurology to targeted therapy.</span></p></div>","PeriodicalId":376,"journal":{"name":"Journal of Photochemistry and Photobiology C: Photochemistry Reviews","volume":"48 ","pages":"Article 100423"},"PeriodicalIF":13.6,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jphotochemrev.2021.100423","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2882520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
K. Davies, Y. Cherif, G. Pazhani, S. Anantharaj, H. Azzi, C. Terashima, A. Fujishima, S. Pitchaimuthu
{"title":"The upsurge of photocatalysts in antibiotic micropollutants treatment: Materials design, recovery, toxicity and bioanalysis","authors":"K. Davies, Y. Cherif, G. Pazhani, S. Anantharaj, H. Azzi, C. Terashima, A. Fujishima, S. Pitchaimuthu","doi":"10.1016/J.JPHOTOCHEMREV.2021.100437","DOIUrl":"https://doi.org/10.1016/J.JPHOTOCHEMREV.2021.100437","url":null,"abstract":"","PeriodicalId":376,"journal":{"name":"Journal of Photochemistry and Photobiology C: Photochemistry Reviews","volume":"76 1","pages":"100437"},"PeriodicalIF":13.6,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83867092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Leonardo Vinicius Monteiro de Assis , Paulo Newton Tonolli , Maria Nathalia Moraes , Maurício S. Baptista , Ana Maria de Lauro Castrucci
{"title":"How does the skin sense sun light? An integrative view of light sensing molecules","authors":"Leonardo Vinicius Monteiro de Assis , Paulo Newton Tonolli , Maria Nathalia Moraes , Maurício S. Baptista , Ana Maria de Lauro Castrucci","doi":"10.1016/j.jphotochemrev.2021.100403","DOIUrl":"https://doi.org/10.1016/j.jphotochemrev.2021.100403","url":null,"abstract":"<div><p>The consensus on the effects of excessive sun exposure on human health has long emphasized the negative effects of solar UV radiation. Nevertheless, although UV radiation has been demonized, less is known about the consequences of sun exposure while using sunscreen, which can lead to high visible light exposure. UV and visible light play key roles in vitamin D synthesis, reduction of blood pressure, among other beneficial effects. In this review, we aim to provide a comprehensive view of the wide range of responses of the human skin to sunlight by revisiting data on the beneficial and harmful effects of UV and visible light. We start by exploring the interaction of photons in the skin at several levels including physical (depth of photon penetration), chemical (light absorption and subsequent photochemical events), and biological (how cells and tissues respond). Skin responses to sun exposure can only be comprehensively understood through a consideration of the light-absorbing molecules present in the skin, especially the light-sensing proteins called opsins. Indeed, many of the cellular responses to sun exposure are modulated by opsins, which act as the “eyes of the skin”.</p></div>","PeriodicalId":376,"journal":{"name":"Journal of Photochemistry and Photobiology C: Photochemistry Reviews","volume":"47 ","pages":"Article 100403"},"PeriodicalIF":13.6,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jphotochemrev.2021.100403","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2606851","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}