Daniel A. Heredia , Andrés M. Durantini , Javier E. Durantini , Edgardo N. Durantini
{"title":"Fullerene C60 derivatives as antimicrobial photodynamic agents","authors":"Daniel A. Heredia , Andrés M. Durantini , Javier E. Durantini , Edgardo N. Durantini","doi":"10.1016/j.jphotochemrev.2021.100471","DOIUrl":"https://doi.org/10.1016/j.jphotochemrev.2021.100471","url":null,"abstract":"<div><p>Functionalized fullerenes have shown interesting biomedical applications as potential phototherapeutic agents. The hydrophobic carbon sphere of fullerene C<sub>60</sub> can be substituted by cationic groups to obtain amphiphilic structures. These compounds absorb mainly UV light, but absorption in the visible region can be enhanced by anchoring light-harvesting antennas to the C<sub>60</sub> core. Upon photoexcitation, fullerenes act as spin converters by effective intersystem crossing. From this excited state, they can react with ground state molecular oxygen and other substrates to form reactive oxygen species. This process leads to the formation of singlet molecular oxygen by energy transfer or superoxide anion radical by electron transfer. Photodynamic inactivation experiments indicate that cationic fullerenes are highly effective photosensitizers with applications as broad-spectrum antimicrobial agents. In these structures, the hydrophobic character of C<sub>60</sub> improves membrane penetration, while the presence of positive charges increases the binding of the fullerene derivatives with microbial cells. Herein, we summarize the progress of antimicrobial photodynamic inactivation based on substituted fullerenes specially designed to improve the photodynamic activity.</p></div>","PeriodicalId":376,"journal":{"name":"Journal of Photochemistry and Photobiology C: Photochemistry Reviews","volume":"51 ","pages":"Article 100471"},"PeriodicalIF":13.6,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2079016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chengxuan He , Shiqun Wu , Lingzhi Wang , Jinlong Zhang
{"title":"Recent advances in photo-enhanced dry reforming of methane: A review","authors":"Chengxuan He , Shiqun Wu , Lingzhi Wang , Jinlong Zhang","doi":"10.1016/j.jphotochemrev.2021.100468","DOIUrl":"https://doi.org/10.1016/j.jphotochemrev.2021.100468","url":null,"abstract":"<div><p>Converting methane and carbon dioxide into hydrogen and carbon monoxide is significant and attractive because it can mitigate the greenhouse effect and produce useful chemical intermediate. However, these two greenhouse gases are challenging to convert due to their high bond energy and chemically inert. Although thermocatalytic dry reforming of methane (DRM) achieves high efficiency, it requires high energy and often causes deactivation due to carbon deposition. Recently, a lot of research results show that photo-enhanced DRM is a promising and green route for this reaction under relatively mild conditions. This review first introduces the importance and challenge of CH<sub>4</sub> and CO<sub>2</sub> conversion. Then, we summarize the related reports of photo-enhanced dry reforming of methane in detail, including material preparation, experimental conditions and results, and mechanism study. In particular, the related studies have been classified according to types of input energy and the types of catalyst. Finally, we provide insightful perspectives and prospects for the future development of this field.</p></div>","PeriodicalId":376,"journal":{"name":"Journal of Photochemistry and Photobiology C: Photochemistry Reviews","volume":"51 ","pages":"Article 100468"},"PeriodicalIF":13.6,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"1742899","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Supramolecular optical sensor arrays for on-site analytical devices","authors":"Yui Sasaki, Xiaojun Lyu, Wei Tang, Hao Wu, Tsuyoshi Minami","doi":"10.1016/j.jphotochemrev.2021.100475","DOIUrl":"https://doi.org/10.1016/j.jphotochemrev.2021.100475","url":null,"abstract":"<div><p>Supramolecular optical chemosensors are useful tools in analytical chemistry for the visualization of molecular recognition information. One advantage is that they can be utilized for array systems to detect multiple analytes. However, chemosensor arrays have been evaluated mainly in the solution phase, which limits a wide range of practical applications. Thus, appropriate solid support materials such as polymer gels and papers are required to broaden the scope of the application of chemosensors as on-site analytical tools. In this review, we summarize the actual approaches for the fabrication of solid-state chemosensor arrays combined with powerful data processing techniques and portable digital recorders for real-world applications.</p></div>","PeriodicalId":376,"journal":{"name":"Journal of Photochemistry and Photobiology C: Photochemistry Reviews","volume":"51 ","pages":"Article 100475"},"PeriodicalIF":13.6,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"1745218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Organic soft crystals exhibiting spontaneously reversible mechano-responsive luminescence","authors":"Toshiki Mutai , Satoshi Takamizawa","doi":"10.1016/j.jphotochemrev.2021.100479","DOIUrl":"https://doi.org/10.1016/j.jphotochemrev.2021.100479","url":null,"abstract":"<div><p>Mechano-responsive luminescence, or mechanochromic luminescence (MCL), is a type of luminescence that can be reversibly controlled by the addition of mechanical stimuli. Organic materials exhibiting MCL have been an ongoing area of development since the early 2000s, and the number of reports into such materials has been steadily increasing. While the majority of MCL systems rely on the brittle nature of organic crystalline solids, there is a growing interest in \"flexible\" organic crystals that exhibit mechanical bending or shape deformation owing to their elasticity/plasticity. Such non-destructive deformed crystals may exhibit a new type of MCL that can be controlled by the magnitude of the force stress. In this review, we describe MCL systems capable of the spontaneous recovery of changes in their luminescent<span> properties in response to the loading/unloading of mechanical stress. We particularly focus on the MCL of flexible crystals based on the density gradient of molecular packing (i.e., elastic and plastic crystals) and an emerging system known as \"superelastochromism,” which is based on spontaneously reversible crystal polymorphism. This emerging research area has the potential to play an important role in the promotion of next-generation soft crystals.</span></p></div>","PeriodicalId":376,"journal":{"name":"Journal of Photochemistry and Photobiology C: Photochemistry Reviews","volume":"51 ","pages":"Article 100479"},"PeriodicalIF":13.6,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2078897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Luminescence of lanthanide complexes: From fundamental to prospective approaches related to water- and molecular-stimuli","authors":"Miki Hasegawa , Hitomi Ohmagari , Hideyuki Tanaka , Kanade Machida","doi":"10.1016/j.jphotochemrev.2022.100484","DOIUrl":"https://doi.org/10.1016/j.jphotochemrev.2022.100484","url":null,"abstract":"<div><p>Luminescent lanthanide (Ln) complexes are attracted much attention because of their stable emission colors induced by the photo-antenna effect through the photo-excited energy transfer from aromatic ligands to Ln ions. Here, we will introduce some systems of luminescent Ln complexes with metastable states with the phase transition induced by water and other small molecules, the relative arrangement of hydrogel formation and Ln luminescence enhancement, and the diversity of the thin air-water interface. The energy donor levels in each system should be designed to sensitize Ln-luminescence with the consideration of media, interaction and assembling. Luminescence quenching of Ln complexes in water is a point that should be considered for the development of materials and for the purpose of bio-related materials. Then, the principle of the change in luminescence intensity by the effect of water molecules is described, and the estimation of a hydrated structure of the complex is estimated using the luminescence lifetimes in H<sub>2</sub>O and D<sub>2</sub>O. The molecular arrangement of these crystals changes under the vapor-stimuli, and the coloration and luminescence may be enhanced. Some interesting cases of luminescent Ln complexes with the crystal-to-crystal phase transitions will be introduced with the vapor adsorption. Hydrogels are mostly water by volume; a system in which Ln luminescence is maintained implies that Ln ions are placed in hydrophobic positions in self-assemblies with strong luminescence. The formation of thin films at the molecular level and their Ln luminescence properties are introduced. For example, when a monolayer of a surface-active Ln complex is formed at the air-water interface, the repeated accumulation of the flexible film forms a metastable structure with a regular structure different from that of a crystal, and no water is incorporated into the film. These can not only derive circularly or linearly polarized light, but also take in other molecules and change the emission. Finally, we will suggest the prospects for the development of Ln complexes.</p></div>","PeriodicalId":376,"journal":{"name":"Journal of Photochemistry and Photobiology C: Photochemistry Reviews","volume":"50 ","pages":"Article 100484"},"PeriodicalIF":13.6,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"1992908","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Electrochemical photoluminescence modulation of functional materials and their electrochemical devices","authors":"Kazuki Nakamura , Kenji Kanazawa , Norihisa Kobayashi","doi":"10.1016/j.jphotochemrev.2022.100486","DOIUrl":"https://doi.org/10.1016/j.jphotochemrev.2022.100486","url":null,"abstract":"<div><p>This paper describes overview of electrofluorochromism, which is a phenomenon that controls photoluminescence<span> through a change in the redox states<span> of functional molecules, metal complexes, polymeric films, etc. Electrofluorochromic materials are considered prospective innovative materials because they can convert electrical input into intuitive visual signals. This field opens novel systems by combining absorption, reflection, and luminescence properties, leading to high contrast, night and day visibility, low-cost displays, and various sensing applications. The former sections provided a short overview of the electrofluorochromic phenomena and observation setups. The electrofluorochromic reactions and devices synchronized with the absorption change based on the electrochemical reaction we reported were also reviewed.</span></span></p></div>","PeriodicalId":376,"journal":{"name":"Journal of Photochemistry and Photobiology C: Photochemistry Reviews","volume":"50 ","pages":"Article 100486"},"PeriodicalIF":13.6,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3076981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A new generation of visible-light-active photocatalysts—The alkaline earth metal bismuthates: Syntheses, compositions, structures, and properties","authors":"Dmitry S. Shtarev , Nick Serpone","doi":"10.1016/j.jphotochemrev.2022.100501","DOIUrl":"https://doi.org/10.1016/j.jphotochemrev.2022.100501","url":null,"abstract":"<div><p><span><span>Semiconductor materials containing bismuth have attracted the attention of researchers over the past several decades, as a result of their high </span>photocatalytic activity<span> in various reactions and/or high efficiency in their photoelectric conversion of solar energy. This interest originated from the observations that bismuth-containing semiconductors have a sufficiently small bandgap, which makes them sensitive to radiation in the visible spectral range; thus, visible-light-active materials. Among the various bismuth-containing semiconductor materials, the bismuthates of </span></span>alkaline earth metals<span> are distinguished and describe into separate groups. This article reviews research on the known methods of obtaining bismuthates of various alkaline earth metals (magnesium, calcium, strontium<span>, and barium), and further analyzes their composition, structure, and visible-light-active photocatalytic activity.</span></span></p></div>","PeriodicalId":376,"journal":{"name":"Journal of Photochemistry and Photobiology C: Photochemistry Reviews","volume":"50 ","pages":"Article 100501"},"PeriodicalIF":13.6,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3261412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vishal Srivastava , Pravin K. Singh , Praveen P. Singh
{"title":"Recent advances of visible-light photocatalysis in the functionalization of organic compounds","authors":"Vishal Srivastava , Pravin K. Singh , Praveen P. Singh","doi":"10.1016/j.jphotochemrev.2022.100488","DOIUrl":"https://doi.org/10.1016/j.jphotochemrev.2022.100488","url":null,"abstract":"<div><p>Visible-light photocatalysis offers unique opportunities to achieve smooth and clean functionalization of organic compounds by unlocking site-specific reactivities, generally under mild reaction conditions. This review offers a critical assessment of current literature, pointing out the recent developments and potential applications in the field of photocatalysis as well as its utilization in the field of organic synthesis for expected future progress.</p></div>","PeriodicalId":376,"journal":{"name":"Journal of Photochemistry and Photobiology C: Photochemistry Reviews","volume":"50 ","pages":"Article 100488"},"PeriodicalIF":13.6,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2283671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shi-Peng Wan , Hai-Yan Lu , Meng Li , Chuan-Feng Chen
{"title":"Advances in circularly polarized luminescent materials based on axially chiral compounds","authors":"Shi-Peng Wan , Hai-Yan Lu , Meng Li , Chuan-Feng Chen","doi":"10.1016/j.jphotochemrev.2022.100500","DOIUrl":"https://doi.org/10.1016/j.jphotochemrev.2022.100500","url":null,"abstract":"<div><p><span>Circularly polarized (CP) light, as a special form of polarized light<span>, demonstrates potential application prospects in future displays and optoelectronic technologies. Circularly </span></span>polarized luminescence<span><span> (CPL) from chiral chromophores<span> is an ideal method to directly generate CP light, but how to design efficient emitters is always a perplexing problem. Among various chiral materials, CPL materials with axial chirality can provide us with clear structural parameters and information to further explore the structure-activity relationship. Herein, we systematically summarize the development status of axially chiral compounds with CPL properties from two aspects of </span></span>photoluminescence<span> and electroluminescence<span>, covering metal complexes, polymers, supramolecular assemblies, simple organic molecules, and liquid crystals systems. In addition, we initially explore the relationship between CPL performance and axially chiral configuration, and the current challenges and opportunities in this vibrant field are also discussed.</span></span></span></p></div>","PeriodicalId":376,"journal":{"name":"Journal of Photochemistry and Photobiology C: Photochemistry Reviews","volume":"50 ","pages":"Article 100500"},"PeriodicalIF":13.6,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2261306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}